K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2021

\(=\dfrac{2\sqrt{3}+2+2\sqrt{3}-2}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\\ =\dfrac{4\sqrt{3}}{2}-\sqrt{3}=2\sqrt{3}-\sqrt{3}=\sqrt{3}\)

1: \(=\sqrt{5}-\dfrac{\sqrt{5}}{2}=\dfrac{\sqrt{5}}{2}\)

2: \(=\dfrac{4+2\sqrt{3}+4-2\sqrt{3}}{2}=\dfrac{8}{2}=4\)

4: \(=\dfrac{-3+5\sqrt{3}}{11}+\dfrac{3+5\sqrt{3}}{11}=\dfrac{10\sqrt{3}}{11}\)

\(=\dfrac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}+\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}\cdot\left(\dfrac{2\sqrt{3}+\sqrt{18}+2\sqrt{3}-\sqrt{18}}{-2}\right)-\dfrac{1}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}+\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}\cdot\dfrac{4\sqrt{3}}{-2}\)

\(=\dfrac{\left(\sqrt{3}+\sqrt{2}-1\right)\left(2-\sqrt{6}\right)}{-2}+\dfrac{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}-1\right)}{1}\cdot\dfrac{-4\sqrt{3}}{2}\)

\(=\dfrac{2\sqrt{3}-3\sqrt{2}+2\sqrt{2}-2\sqrt{3}-2+\sqrt{6}+4\sqrt{3}\left(2-\sqrt{2}-\sqrt{6}+\sqrt{3}\right)}{-2}\)

\(=\dfrac{\sqrt{2}-2+\sqrt{6}+8\sqrt{3}-4\sqrt{6}-12\sqrt{2}+12}{-2}\)

\(=-\dfrac{-11\sqrt{2}+8\sqrt{3}-3\sqrt{6}+10}{2}\)

25 tháng 12 2017

Rút gọn biểu thức chứa căn bậc hai

8 tháng 9 2023

\(B=\left(\dfrac{4}{1-\sqrt{5}}+\dfrac{1}{2+\sqrt{5}}-\dfrac{4}{3-\sqrt{5}}\right)\left(\sqrt{5}-6\right)\)

\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}+\dfrac{2-\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}-\dfrac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\right]\left(\sqrt{5}-6\right)\)

\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{1-5}+\dfrac{2-\sqrt{5}}{4-5}-\dfrac{4\left(3+\sqrt{5}\right)}{9-5}\right]\left(\sqrt{5}-6\right)\)

\(B=\left[-\dfrac{4\left(1+\sqrt{5}\right)}{4}-\dfrac{2-\sqrt{5}}{1}-\dfrac{4\left(3+\sqrt{5}\right)}{4}\right]\left(\sqrt{5}-6\right)\)

\(B=\left(-1-\sqrt{5}-2+\sqrt{5}-3-\sqrt{5}\right)\left(\sqrt{5}-6\right)\)

\(B=\left(-\sqrt{5}-6\right)\left(\sqrt{5}-6\right)\)

\(B=-\left(\sqrt{5}+6\right)\left(\sqrt{5}-6\right)\)

\(B=-\left(5-36\right)\)

\(B=-\left(-31\right)\)

\(B=31\)

_____________________________

\(\sqrt{48}-\dfrac{\sqrt{21}-\sqrt{15}}{\sqrt{7}-\sqrt{5}}+\dfrac{2}{\sqrt{3}+1}\)

\(=4\sqrt{3}-\dfrac{\sqrt{3}\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}+\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(=4\sqrt{3}-\sqrt{3}-\dfrac{2\left(\sqrt{3}-1\right)}{2}\)

\(=3\sqrt{3}-\sqrt{3}+1\)

\(=2\sqrt{3}+1\)

31 tháng 12 2023

Bài 1:

ĐKXĐ: \(\dfrac{5}{x^2+6}>=0\)

=>\(x^2+6>0\)

mà \(x^2+6>=6>0\forall x\)

nên \(x\in R\)

Bài 2:

a: Sửa đề: \(\dfrac{3}{\sqrt{2}}+\sqrt{\dfrac{1}{2}}-2\cdot\sqrt{18}+\sqrt{\left(1-\sqrt{2}\right)^2}\)

\(=\dfrac{3}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-2\cdot3\sqrt{2}+\left|1-\sqrt{2}\right|\)

\(=2\sqrt{2}-6\sqrt{2}+\sqrt{2}-1=-3\sqrt{2}-1\)

b: \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)

\(=\dfrac{\sqrt{6}+1}{3\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{6}\)

\(=\dfrac{\sqrt{12}+\sqrt{2}+\sqrt{3}-\sqrt{2}}{6}=\dfrac{3\sqrt{3}}{6}=\dfrac{\sqrt{3}}{2}\)

c: \(\sqrt[3]{\dfrac{3}{4}}\cdot\sqrt[3]{\dfrac{9}{16}}=\sqrt[3]{\dfrac{3}{4}\cdot\dfrac{9}{16}}=\sqrt[3]{\dfrac{27}{64}}=\dfrac{3}{4}\)

d: \(\sqrt[3]{54}=\sqrt[3]{27\cdot2}=3\sqrt[3]{2}\)

e: \(\dfrac{\sqrt[3]{54}}{\sqrt[3]{-2}}=\sqrt[3]{\dfrac{54}{-2}}=\sqrt[3]{-27}=-3\)

f: \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)

\(=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}\)

\(=\sqrt{2}+1-\sqrt{2}+1=2\)

a: \(=\dfrac{\sqrt{2}\left(2\sqrt{2}+3\right)+2\sqrt{2}-3}{-1}\)

\(=\dfrac{4+3\sqrt{2}+2\sqrt{2}-3}{-1}=-1-5\sqrt{2}\)

b: \(=\dfrac{1}{\sqrt{10}+\sqrt{6}}-\dfrac{1}{\sqrt{10}-\sqrt{6}}\)

\(=\dfrac{\sqrt{10}-\sqrt{6}-\sqrt{10}-\sqrt{6}}{4}=\dfrac{-2\sqrt{6}}{4}=-\dfrac{\sqrt{6}}{2}\)

c: \(\dfrac{-2}{3\sqrt{8}}+\dfrac{1}{3-2\sqrt{2}}\)

\(=\dfrac{-2\left(3-2\sqrt{2}\right)+6\sqrt{2}}{6\sqrt{2}\left(3-2\sqrt{2}\right)}=\dfrac{-6+4\sqrt{2}+6\sqrt{2}}{6\sqrt{2}\left(3-2\sqrt{2}\right)}\)

\(=\dfrac{10\sqrt{2}-6}{6\sqrt{2}\left(3-2\sqrt{2}\right)}=\dfrac{10-3\sqrt{2}}{6\left(3-2\sqrt{2}\right)}=\dfrac{18+11\sqrt{2}}{6}\)

a: \(=\dfrac{2\sqrt{7}-10-6+2\sqrt{7}}{4}+4+2\sqrt{7}-\dfrac{20}{9}+\dfrac{5}{9}\sqrt{7}\)

\(=\sqrt{7}-4+4+2\sqrt{7}-\dfrac{20}{9}+\dfrac{5}{9}\sqrt{7}\)

\(=\dfrac{32}{9}\sqrt{7}-\dfrac{20}{9}\)

b: \(=\dfrac{2\sqrt{6}+4+2\sqrt{6}-4}{2}+\dfrac{5\sqrt{6}}{6}\)

\(=2\sqrt{6}+\dfrac{5}{6}\sqrt{6}=\dfrac{17}{6}\sqrt{6}\)

AH
Akai Haruma
Giáo viên
18 tháng 9 2023

Lời giải:
a.

\(=\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}+\frac{4(\sqrt{5}-1)}{(\sqrt{5}-1)(\sqrt{5}+1)}=\frac{\sqrt{5}+2}{5-2^2}+\frac{4(\sqrt{5}-1)}{5-1}\)

$=\sqrt{5}+2+(\sqrt{5}-1)=2\sqrt{5}+1$
b.

$=\frac{4(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}+\frac{7(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}-2\sqrt{3}$

$=\frac{4(\sqrt{3}+1)}{2}+\frac{7(3+\sqrt{2})}{1}-2\sqrt{3}$
$=2(\sqrt{3}+1)+7(3+\sqrt{2})-2\sqrt{3}$
$=23+7\sqrt{2}$
c.

$=(\frac{4(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})}-\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}).\frac{7(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}$

$=[(3+\sqrt{5})-(\sqrt{5}+2)].(3+\sqrt{2})$

$=1(3+\sqrt{2})=3+\sqrt{2}$