Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm được câu a thui
\(\frac{1}{100}=\frac{1}{10.10}\);\(\frac{1}{90}=\frac{1}{9.10}\);...
Suy ra \(\frac{1}{10.10}-\frac{1}{9.10}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-...-\frac{1}{1.2}\)
\(\frac{1}{10}-\frac{1}{10}-\frac{1}{10}-\frac{1}{9}-...-1-\frac{1}{2}\)
\(\frac{1}{10}-\frac{1}{2}\)
\(-\frac{4}{10}\)
Bn ghi đề sai nên mik sửa nha!mik từng làm rồi ko sai đâu
B=-1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6
B=-(1/90+1/56+1/42+1/30+1/20+1/12+1/6)
B=-(1/10.9+1/8.9+1/8.7+1/7.6+1/6.5+1/5.4+1/4.3+1/3.2)
B=-(1/10-1/9+1/9-1/8+1/8-1/7+1/7-1/6+1/6-1/5+1/5-1/4+1/4-1/3+1/3-1/2)
B=-(1/10-1/2)
B=2/5
HẾT
1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56
=1/(2.3)+1/(3.4)+1/(4.5) + 1/(5.6)+ 1/(6.7)+1/(7.8)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5.+1/5-1/6+1/6-1/7+1/7-1/8
=1-1/8
=7/8
= 1/(2.3) + 1/(3.4) + 1/(4.5) + 1/(5.6) + 1/(6.7) + 1/(7.8)
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8
= 1/2 - 1/8
= 3/8
−190−172−156−142−130−120−112−16−12−190−172−156−142−130−120−112−16−12
=−190−(12+16+112+120+130+142+156+172)=−190−(12+16+112+120+130+142+156+172)
=−190−(11.2+12.3+13.4+14.5+15.6+16.7+17.8+18.9)=−190−(11.2+12.3+13.4+14.5+15.6+16.7+17.8+18.9)
=−190−(1−12+12−13+13−14+14−15+15−16+16−17+17−18+18−19)=−190−(1−12+12−13+13−14+14−15+15−16+16−17+17−18+18−19)
=−190−(1−19)=−190−(1−19)
=−190−89=−190−89
=−910
\(\frac{-1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
= \(-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
=\(-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
=\(-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
=\(-\left(1-\frac{1}{10}\right)=-\left(\frac{9}{10}\right)=-\frac{9}{10}\)
\(\frac{-1}{90}-\frac{-1}{72}-\frac{-1}{56}-\frac{-1}{42}-\frac{-1}{30}-\frac{-1}{20}-\frac{-1}{12}-\frac{-1}{6}-\frac{-1}{2}\)
\(=\frac{-1}{10.9}-\frac{-1}{9.8}-\frac{-1}{8.7}-\frac{-1}{7.6}-\frac{-1}{6.5}-\frac{-1}{5.4}-\frac{-1}{4.3}-\frac{-1}{3.2}-\frac{-1}{2.1}\)
1/100 - 1/90 - 1/72 - 1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2 = -0,833
\(\dfrac{1}{2}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{20}\)+\(\dfrac{1}{30}\)+\(\dfrac{1}{42}\)+\(\dfrac{1}{56}\)+\(\dfrac{1}{72}\)+\(\dfrac{1}{90}\)
=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{4.5}\)+\(\dfrac{1}{5.6}\)+\(\dfrac{1}{6.7}\)+\(\dfrac{1}{7.8}\)+\(\dfrac{1}{8.9}\)+\(\dfrac{1}{9.10}\)
=\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+\(\dfrac{1}{9}\)-\(\dfrac{1}{10}\)
=\(\dfrac{1}{1}\)-\(\dfrac{1}{10}\)=\(\dfrac{10}{10}\)-\(\dfrac{1}{10}\)=\(\dfrac{9}{10}\)
Vậy \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}=\dfrac{9}{10}\)
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)
=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
= \(1-\dfrac{1}{10}\) = \(\dfrac{9}{10}\)
B= \(-\frac{9}{10}=-0,9\)