Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 3x - 2 )( 4x + 5 ) - 6x( 2x - 1 )
= 12x2 + 7x - 10 - 12x2 + 6x
= 13x - 10
b) ( 2x - 5 )2 - 4( x + 3 )( x - 3 )
= 4x2 - 20x + 25 - 4( x2 - 9 )
= 4x2 - 20x + 25 - 4x2 + 36
= 61 - 20x
c) 2x3 - 5x2 + 7x - 6
= 2x3 - 3x2 - 2x2 + 3x + 4x - 6
= x2( 2x - 3 ) - x( 2x - 3 ) + 2( 2x - 3 )
= ( 2x - 3 )( x2 - x + 2 )
=> ( 2x3 - 5x2 + 7x - 6 ) : ( 2x - 3 ) = x2 - x + 2
a, (3x - 2 ) (4x + 5) - 6x (2x -1) = ( 7x + 15x -8x - 10 ) - ( 12x2 -6x ) = 7x2 + 15x - 8x -10 -12x2 + 6x = -5x2 + x - 10
a) –4x(5x^2 – 2xy + y^2)
= -20x^3 + 8x^2y - 4xy^2
b) (4x – 1)(2x^2 – x – 1)
= 8x^3 - 4x^2 - 4x - 2x^2 + x + 1
= 8x^3 - 6x^2 - 3x + 1
a)xy(x2+2y)=xy.x2+xy.2y
=x3y+2xy2
b)-4(6x2-xy)=-4.6x2+4.xy
=-24x2+4xy
c)4x[x2+6x-1/2]
=4x.x2+4x.6x-4x.1/2
=4x3+24x2-2x
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a: =2x^5-15x^3-x^2-2x^5-x^3=-16x^3-x^2
b: =x^3+3x^2-2x-3x^2-9x+6
=x^3-11x+6
c: \(=\dfrac{4x^3+2x^2-6x^2-3x-2x-1+5}{2x+1}\)
\(=2x^2-3x-1+\dfrac{5}{2x+1}\)
a) \(6x^3\left(\dfrac{1}{3}x^2-\dfrac{5}{2}-\dfrac{1}{6}\right)-2x^5-x^3\)
\(=6x^3\left(\dfrac{1}{3}x^2-\dfrac{16}{6}\right)-2x^5-x^3\)
\(=2x^5-16x^3-2x^5-x^3\)
\(=-17x^3\)
b) \(\left(x+3\right)\left(x^2+3x-2\right)\)
\(=x^3+3x^2-2x+3x^2+9x-6\)
\(=x^3+6x^2+7x-6\)
c) \(\left(4x^3-4x^2-5x+4\right):\left(2x+1\right)\)
\(=2x^2+4x^3-2x-4x^2-\dfrac{5}{2}-5x+\dfrac{2}{x}+4\)
\(=4x^3-2x^2-7x+\dfrac{2}{x}+\dfrac{3}{2}\)
a: \(=20x^2-10x^3+25x^2\)
b: \(=12x^3+18x^2-10x-15\)