K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

\(\frac{x^2}{x^2+2x+1}\)\(-\)\(\frac{1}{x^2+2x+1}\)\(+\)\(\frac{2}{x +1}\)

\(\frac{x^2-1+2\left(x+1\right)}{\left(x+1\right)^2}\)\(\frac{x^2+2x+1}{x^2+2x+1}\)= 1

7 tháng 6 2020

oánh chết cha mày bây giờ

Bài 2:

1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)

\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)

\(=x^3+2^3-2\left(x^2-1\right)\)

\(=x^3+8-2x^2+2=x^3-2x^2+10\)

\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)

\(=\left(-2y\right)^2+4\left(y+2\right)\)

\(=4y^2+4y+8\)

2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)

3: \(B=4y^2+4y+8\)

\(=4y^2+4y+1+7\)

\(=\left(2y+1\right)^2+7>=7>0\forall y\)

=>B luôn dương với mọi y

Bài 1:

5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)

\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)

\(=2x^3-x+x^2-y\)

6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)

\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)

\(=6x^2+23x-55-6x^2-84x-294\)

=-61x-349

AH
Akai Haruma
Giáo viên
19 tháng 12 2022

Bạn cần viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo). Viết như thế này nhìn khó đọc quá.

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

30 tháng 12 2023

a: ĐKXĐ: \(x\ne-2\)

\(\left(\dfrac{-2x-1}{x+2}+\dfrac{3x+4}{x+2}\right)\cdot\left(x^2-4\right)\)

\(=\dfrac{-2x-1+3x+4}{x+2}\cdot\left(x-2\right)\left(x+2\right)\)

\(=\left(x+3\right)\left(x-2\right)=x^2+x-6\)

b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)

\(\left(\dfrac{-x-1}{x+1}+\dfrac{2x-1}{x+1}\right)\cdot\dfrac{x^2+2x+1}{x-2}\)

\(=\dfrac{-x-1+2x-1}{x+1}\cdot\dfrac{\left(x+1\right)^2}{x-2}\)

\(=\dfrac{x-2}{x-2}\cdot\left(x+1\right)=x+1\)

Ta có: \(\dfrac{2x+3}{1-x^2}+\dfrac{2x+1}{x^2-2x+1}\)

\(=\dfrac{-2x-3}{\left(x-1\right)\left(x+1\right)}+\dfrac{2x+1}{\left(x-1\right)^2}\)

\(=\dfrac{\left(-2x-3\right)\left(x-1\right)}{\left(x-1\right)^2\cdot\left(x+1\right)}+\dfrac{\left(2x+1\right)\left(x+1\right)}{\left(x+1\right)\cdot\left(x-1\right)^2}\)

\(=\dfrac{-2x^2+2x-3x+3+2x^2+2x+x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)

\(=\dfrac{2x+4}{\left(x-1\right)^2\cdot\left(x+1\right)}\)

3 tháng 1 2021

thực ra mình cũng cố rồi nhưng mà IQ có hạn nên nghĩ mãi ko ra, thế nên mới phải cầu cứu mấy bạn giỏi hơn đấy =)

 

Bài 3:

3: \(6x\left(x-y\right)-9y^2+9xy\)

\(=6x\left(x-y\right)+9xy-9y^2\)

\(=6x\left(x-y\right)+9y\left(x-y\right)\)

\(=\left(x-y\right)\left(6x+9y\right)\)

\(=3\left(2x+3y\right)\left(x-y\right)\)

Bài 4:

loading...

loading...

loading...

2 tháng 12 2023

ĐKXĐ: \(x\ne0;x\ne\pm1\)

\(\dfrac{3}{2x^2+2x}+\dfrac{2x-1}{x^2-1}-\dfrac{2}{x}\)

\(=\dfrac{3}{2x\left(x+1\right)}+\dfrac{2x-1}{\left(x-1\right)\left(x+1\right)}-\dfrac{4}{2x}\)

\(=\dfrac{3\left(x-1\right)}{2x\left(x-1\right)\left(x+1\right)}+\dfrac{2x\left(2x-1\right)}{2x\left(x-1\right)\left(x+1\right)}-\dfrac{4\left(x^2-1\right)}{2x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{3x-3+4x^2-2x-4x^2+4}{2x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x+1}{2x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{2x\left(x-1\right)}\)

\(=\dfrac{1}{2x^2-2x}\)

Kết bạn với tôi đi ,tôi cô đơn quá 

 

23 tháng 10 2023

a: \(\dfrac{6}{x^2+4x}+\dfrac{3}{2x+8}\)

\(=\dfrac{6}{x\left(x+4\right)}+\dfrac{3}{2\left(x+4\right)}\)

\(=\dfrac{12+3x}{2x\left(x+4\right)}=\dfrac{3\left(x+4\right)}{2x\left(x+4\right)}=\dfrac{3}{2x}\)

b: \(\dfrac{x+1}{2x-2}+\dfrac{x-1}{2x+2}+\dfrac{x^2}{1-x^2}\)

\(=\dfrac{x+1}{2\left(x-1\right)}+\dfrac{x-1}{2\left(x+1\right)}-\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)^2+\left(x-1\right)^2-2x^2}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+2x+1+x^2-2x+1-2x^2}{2\left(x-1\right)\left(x+1\right)}=\dfrac{2}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x^2-1}\)

c: \(\dfrac{1}{x^2+xy}+\dfrac{2}{y^2-x^2}+\dfrac{1}{xy-x^2}\)

\(=\dfrac{1}{x\left(x+y\right)}-\dfrac{2}{\left(x-y\right)\left(x+y\right)}-\dfrac{1}{x\left(x-y\right)}\)

\(=\dfrac{x-y-2x-x-y}{x\left(x-y\right)\left(x+y\right)}=\dfrac{-2x-2y}{x\left(x-y\right)\left(x+y\right)}\)

\(=-\dfrac{2}{x\left(x-y\right)}\)