Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(0,5.1\frac{1}{3}.75\%:\frac{2}{5}+\frac{3}{5}\)
\(=\frac{1}{2}.\frac{4}{3}.\frac{3}{4}:\frac{2}{5}+\frac{3}{5}\)
\(=\frac{1}{2}.\frac{4}{3}.\frac{3}{4}.\frac{5}{2}+\frac{3}{5}\)
\(=\frac{5}{4}+\frac{3}{5}\)
\(=\frac{37}{20}\)
\(0,5.1\frac{1}{3}.75\%:\frac{2}{5}+\frac{3}{5}\)
\(=\frac{1}{2}.\frac{4}{3}.\frac{3}{4}:\frac{2}{5}+\frac{3}{5}\)
\(=\frac{1}{2}.\frac{4}{3}.\frac{3}{4}.\frac{5}{2}+\frac{3}{5}\)
\(=\frac{1.4.3.5}{2.3.4.2}+\frac{3}{5}\)
\(=\frac{5}{4}+\frac{3}{5}\)
\(=\frac{37}{20}\)
~Học tốt~
3/4-3/2+1/2:5/12-1/4
3/4-3/2+1/2.12/5-1/2
3/4-3/2+6/5-1/2
3/4-6/4+6/5-1/2
-3/4+6/5-1/2
-15/20+24/20-10/20
9/20-10/20
-1/20
Bài 1 :
36/1212 = 3/101
13/1313 = 1/101
3/101 + 1/101 = 4/101
Vậy 36/1212 + 13/1313 = 4/101.
Bài 2 :
A = 5/13 + 1/2 + -5/9 + -3/6 + 4/-9
A = 5/13 + 1/2 + -5/9 + -1/2 + -4/9
A = (1/2 + -1/2) + (-5/9 + -4/9) + 5/13
A = 0 + (-1) + 5/13
A = (-1) + 5/13 = -13/13 + 5/13 = 8/13.
Chúc bạn học giỏi nhé.
\(P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+\frac{4}{5^5}+...+\frac{11}{5^{12}}\)
\(\Rightarrow\)\(5P=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+\frac{4}{5^4}+...+\frac{11}{5^{11}}\)
\(\Rightarrow\)\(4P=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+\frac{1}{5^4}+...+\frac{1}{5^{11}}-\frac{1}{5^{12}}\)
\(\Rightarrow\)\(20P=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{10}}-\frac{1}{5^{11}}\)
\(\Rightarrow\)\(16P=1-\frac{1}{5^{11}}+\frac{1}{5^{12}}-\frac{1}{5^{11}}\)\(< 1\)
\(\Rightarrow\)\(P< \frac{1}{16}\)
P/s: nguyên tác: https://olm.vn/thanhvien/nhatphuonghocgiot
= \(\frac{2}{7}.\left(5\frac{1}{4}-3\frac{1}{4}\right)\)
= \(\frac{2}{7}.2\)
= \(\frac{4}{7}\)
\(\frac{2}{7}.5\frac{1}{4}-\frac{2}{7}.3\frac{1}{4}\)
=> \(\frac{2}{7}.\left(5\frac{1}{4}-3\frac{1}{4}\right)\)
=> \(\frac{2}{7}.2\)
=> \(\frac{4}{7}\)
#Hk_tốt
#Ngọc's_Ken'z
Ta có : \(A=3+3^2+3^3+.....+3^{2016}\)
\(\Rightarrow3A=3^2+3^3+3^4+......+3^{2017}\)
\(\Rightarrow3A-A=3^{2017}-3\)
\(\Rightarrow2A=3^{2017}-3\)
\(\Rightarrow A=\frac{3^{2017}-3}{2}\)
\(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....+\frac{1}{1024}\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{512}\)
\(\Rightarrow2B-B=1-\frac{1}{1024}\)
\(\Rightarrow B=\frac{1023}{1024}\)
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+....+200\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{200}.\frac{200.201}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{201}{2}\)
\(=\frac{2+3+4+...+201}{2}\)
\(=\frac{\frac{201.202}{2}-1}{2}=10150\)
hoa mắt (@_@)