Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\frac{3}{4}\right)^{45}:\left(\frac{9}{6}\right)^{10}\)
\(=\left(\frac{3}{4}\right)^{45}:\left(\frac{3}{4}\right)^{20}\)
\(=\left(\frac{3}{4}\right)^{25}\)
b) \(\frac{125^{100}.2^{160}}{5^{298}.4^{80}}\)
\(=\frac{5^{300}.2^{160}}{5^{298}.2^{160}}\)
\(=5^2=25\)
a) \(\left(\frac{3}{4}\right)^{45}:\left(\frac{9}{6}\right)^{10}\)
\(\Leftrightarrow\frac{\left(\frac{3}{4}\right)^{45}}{\frac{3^{10}}{2^{10}}}=\frac{\frac{3^{45}}{4^{45}}}{\frac{3^{10}}{2^{10}}}=\frac{3^{45}.2^{10}}{4^{45}}=\frac{3^{35}.2^{10}}{2^{90}}=\frac{3^{35}}{2^{80}}\)
\(\Rightarrow\left(\frac{3}{4}\right)^{45}:\left(\frac{9}{6}\right)^{10}=\frac{3^{35}}{2^{80}}\)
a)\(\Rightarrow\frac{3}{2.\left(x+3\right)}-\frac{x-6}{2x.\left(x+3\right)}\)
\(\Rightarrow\frac{3x-x+6}{2x.\left(x+3\right)}\)
\(\Rightarrow\frac{2x+6}{2x.\left(x+3\right)}=\frac{2.\left(x+3\right)}{2x.\left(x+3\right)}=\frac{2}{2x}=\frac{1}{x}\)
b
=\(\frac{96x^4-75y^7}{40x^3y^3}\)
c, phan tich ra:
=\(\frac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}.\frac{x+4}{2\left(x-2\right)}=\frac{x+2}{6}\)
=
a)\(\left(\frac{1}{2}x-1\right)\left(2x-3\right)=x^2-\frac{3}{2}x-2x+3=x^2-\frac{7}{2}x+3\)
b)\(\left(x-7\right)\left(x-5\right)=x^2-5x-7x+5=x^2-12x+5\)
c)\(\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)\left(4x-1\right)=\left(x^2-\frac{1}{4}\right)\left(4x-1\right)=4x^3-x^2-x+\frac{1}{4}\)
Bài làm:
Ta có: \(\frac{4-x^2}{x-3}+\frac{2x-2x^2}{3-x}+\frac{5-4x}{x-3}\)
\(=\frac{4-x^2}{x-3}+\frac{2x^2-2x}{x-3}+\frac{5-4x}{x-3}\)
\(=\frac{x^2-6x+9}{x-3}\)
\(=\frac{\left(x-3\right)^2}{\left(x-3\right)}=x-3\) \(\left(x\ne3\right)\)
a, \(\frac{x+2y}{8x^2y^5}-\frac{3x^2+2}{12x^4y^4}\)
=\(\frac{\left(x+2y\right)3x^2}{24x^4y^5}-\frac{\left(3x^2+2\right)2y}{24x^4y^5}\)
=\(\frac{3x^3+6x^2y}{24x^4y^5}-\frac{6x^2y+4y}{24x^4y^5}\)
=\(\frac{3x^3+6x^2y-6x^2y-4y}{24x^4y^5}\)
=\(\frac{3x^3-4y}{24x^4y^5}\)
b,\(\frac{y}{xy-5x^2}-\frac{15y-25x}{y^2-25x^2}\)
=\(\frac{y}{x\left(y-5x\right)}-\frac{15y-25x}{\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y\left(y+5x\right)}{x\left(y-5x\right)\left(y+5x\right)}-\frac{\left(15y-25x\right)x}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y^2+5xy}{x\left(y-5x\right)\left(y+5x\right)}-\frac{15xy-25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y^2+5xy-15xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y^2-10xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{\left(y-5x\right)^2}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y-5x}{x\left(y+5x\right)}\)
c,\(\frac{4-x}{x^3+2x}-\frac{x+5}{x^3-x^2+2x-2}\)
=\(\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x^3-x^2\right)+\left(2x-2\right)}\)
=\(\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)
=\(\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\frac{\left(x+5\right)x}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{4x-4-x^2+x}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x^2+5x}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{4x-4-x^2+x-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{-2}{x\left(x-1\right)}\)
a)\(dk,x\ne7;x\ne0\)
\(\frac{4x+13}{5x\left(x-7\right)}-\frac{x-48}{5x\left(7-x\right)}=\frac{4x+13}{5x\left(x-7\right)}+\frac{x-48}{5x\left(x-7\right)}=\frac{\left(4x+13\right)+\left(x-48\right)}{5x\left(x-7\right)}\\ \)
\(=\frac{5x-35}{5x\left(x-7\right)}=\frac{5\left(x-7\right)}{5x\left(x-7\right)}=\frac{1}{x}\)
b)
\(\frac{1}{x-5x^2}-\frac{25x-15}{25x^2-1}=\frac{1}{x\left(1-5x\right)}+\frac{25x-15}{1-\left(5x\right)^2}=\frac{1}{x\left(1-5x\right)}+\frac{25x-15}{\left(1-5x\right)\left(1+5x\right)}\)
\(\frac{1+5x}{x\left(1-5x\right)\left(1+5x\right)}+\frac{x\left(25x-15\right)}{x\left(1-5x\right)\left(1+5x\right)}=\frac{25x^2-15x+5x+1}{x\left(1-5x\right)\left(1+5x\right)}=\frac{25x^2-10x+1}{x\left(1-5x\right)\left(1+5x\right)}\)
\(\frac{4-x}{x^3+2x}-\frac{x+5}{x^3-x^2+2x-2}\)( ĐKXĐ : \(x\ne1\))
\(=\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)
\(=\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x\left(x+5\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-x^2+5x-4}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x^2+5x}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-x^2+5x-4-\left(x^2+5x\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-x^2+5x-4-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-2}{x\left(x-1\right)}=\frac{-2}{x\left(x-1\right)}\)
Đang đánh máy thì bấm gửi -..-
\(A=\frac{125^{100}}{5^{298}}\cdot\frac{2^{160}}{4^{80}}=>A=\frac{\left(5^3\right)^{100}}{5^{298}}\cdot\frac{2^{160}}{\left(2^2\right)^{80}}\)
\(=>A=\frac{5^{300}}{5^{298}}\cdot\frac{2^{160}}{2^{160}}=>A=5^2\cdot1=>A=25\)
\(A=\frac{125^{100}}{5^{298}}.\frac{2^{160}}{4^{80}}\)
\(=\frac{\left(5^3\right)^{100}}{5^{298}}.\frac{2^{160}}{\left(2^2\right)^{80}}\)
\(=\frac{5^{300}}{5^{298}}.\frac{2^{160}}{2^{160}}\)
\(=5^2.1=25\)
Vậy \(A=25\)