Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=5; B=3; C=24 không phụ thuộc x; câu D thì mong bạn xem lại đề
\(A=\left(x^3+x^2+x\right)-\left(x^3+x^2\right)-x+5\)5
\(A=x^3+x^2+x-x^3-x^2-x+5\)
=> A=5
=> A luôn = 5 với mọi x => A không phụ thuộc vào x
\(B=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
\(B=\left(2x^2+x\right)-\left(x^3+2x^2\right)+x^3-x+3\)
\(B=2x^2+x-x^3-2x^2+x^3-x+3\)
=> B= 3
=> B luôn =3 với mọi x => B không phụ thuộc vào x
\(C=4\left(6-x\right)+x^2\left(2+3x\right)-x\left(5x-4\right)+3x^2\left(1-x\right)\)
\(C=24-4x+2x^2+3x^3-5x^2+4x+3x^2-3x^3\)
C=24
=> C=24 với mọi x => C không phụ thuộc vào x
Câu D kí tự cuối có vẻ bạn gõ sai nên mình không làm được, sorry nhiều
A = x(x2 + x + 1) - x2(x + 1) - x + 5
A = x.x2 + x.x + x.1 + (-x2).x + (-x2).1 - x + 5
A = x3 + x2 + x - x3 - x2 - x + 5
A = (x3 - x3) + (x2 - x2) + (x - x) + 5
A = 0 + 0 + 0 + 5
A = 5
Vậy: Biểu thức không phụ thuộc giá trị của biến.
B = x(2x + 1) - x2(x + 2) + x3 - x + 3
B = x.2x + x.1 + (-x2).x + (-x2).2 + x3 - x + 3
B = 2x2 + x - x3 - 2x2 + x3 - x + 3
B = (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3
B = 0 + 0 + 0 + 3
B = 3
Vậy: Biểu thức không phụ thuộc giá trị của biến.
C = 4(6 - x) + x2(2 + 3x) - x(5x - 4) + 3x2(1 - x)
C = 4.6 + 4.(-x) + x2.2 + x2.3x + (-x).5x + (-x).(-4) + 3x2.1 + 3x2.(-x)
C = 24 - 4x + 2x2 + 3x3 - 5x2 + 4x + 3x2 - 3x3
C = 24 + (-4x + 4x) + (2x2 - 5x2 + 3x2) + (3x3 - 3x3)
C = 24 + 0 + 0 + 0
C = 24
Vậy: Biểu thức không phụ thuộc giá trị của biến.
D viết sai thì chịu
a)x5+2x4+3x3+3x2+2x+1=0
<=> x5+x4+x4+x3+2x3+2x2+x2+x+x+1=0
<=>x4(x+1)+x3(x+1)+2x2(x+1)+x(x+1)+(x+1)=0
<=>(x+1)(x4+x3+2x2+x+1)=0
<=>x2(x+1)(x2+x+2+\(\dfrac{1}{x^2}\))=0
<=>x2(x+1)[(x+\(\dfrac{1}{2}\))2+\(\dfrac{7}{4}+\dfrac{1}{x^2}\)]=0
Vì [(x+\(\dfrac{1}{2}\))2\(+\dfrac{7}{4}+\dfrac{1}{x^2}\)]>0 với mọi x thuộc R
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy S={0;-1}
a: \(=12x^{n+2}+4x^2-8x^{n+2}\)
\(=4x^{n+2}+4x^2\)
b: \(=2x^{2n}+4x^ny^n+2y^{2n}-4x^ny^n-2y^{2n}\)
\(=2x^{2n}\)
c: \(=\left(x^{3n}-y^{3n}\right)\left(x^{3n}+y^{3n}\right)\)
\(=x^{6n}-y^{6n}\)
d: \(=4^n\cdot4-3\cdot4^n=4^n\)
a,<=>\(\frac{\left(2x+1\right)^2}{4}\)+\(\frac{2\left(2x-1\right)^2}{4}\)≥\(\frac{12\left(x+5\right)^2}{4}\)
<=>4x2+4x+1+2(4x2-4x+1)≥12(x2+10x+25)
<=>4x2+4x+1+8x2-8x+2≥12x2+120x+300
<=>4x2+4x+1+8x2-8x+2-12x2-120x-300≥0
<=>-124x-297≥0
<=>124x+297≤0
<=>124x≤-297
<=>x≤\(\frac{-297}{124}\)
b, Tương tự câu a
c, |5−3x|=2+x
TH1: 5-3x=2+x
<=> -3x - x = 2 - 5
<=> -4x = -3
<=> x = 3/4
TH2: 5-3x = -2 - x
<=> -3x + x = -2 - 5
<=> -2x = -7
<=> x = 7/2
a: \(\left[\dfrac{1}{2}x^2\left(2x-1\right)^m-\dfrac{1}{2}x^{m+2}\right]:\dfrac{1}{2}x^2=0\)
\(\Leftrightarrow\left(2x-1\right)^m-x^m=0\)
\(\Leftrightarrow\left(2x-1\right)^m=x^m\)
=>2x-1=x
=>x=1
b: \(\left(2x-3\right)^8=\left(2x-3\right)^6\)
\(\Leftrightarrow\left(2x-3\right)^6\cdot\left(2x-4\right)\left(2x-2\right)=0\)
hay \(x\in\left\{\dfrac{3}{2};2;1\right\}\)
c: \(\Leftrightarrow4x^2-4x+1+y^2-\dfrac{2}{3}y+\dfrac{1}{9}+\dfrac{6}{9}=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(y-\dfrac{1}{3}\right)^2+\dfrac{6}{9}=0\)(vô lý)