K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

\(a.\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}=\left|\sqrt{2}-\sqrt{3}\right|+3\sqrt{2}=\sqrt{3}-\sqrt{2}+3\sqrt{2}\left(\sqrt{3}>\sqrt{2}\right)=\sqrt{3}+2\sqrt{2}\)\(b.3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}=-6\sqrt{2}\)

a: \(=12\sqrt{2}+5\cdot3\sqrt{2}-3\cdot5\sqrt{2}-2\cdot4\sqrt{2}\)

\(=12\sqrt{2}-8\sqrt{2}=4\sqrt{2}\)

b: \(=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(5-\sqrt{3}\right)^2}\)

\(=\sqrt{3}+1+5-\sqrt{3}\)

=6

16 tháng 10 2021

a: Ta có: \(A=\sqrt{8}-2\sqrt{18}+3\sqrt{50}\)

\(=2\sqrt{2}-6\sqrt{2}+15\sqrt{2}\)

\(=11\sqrt{2}\)

b: Ta có: \(B=\sqrt{125}-10\sqrt{\dfrac{1}{20}}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)

\(=5\sqrt{5}-\sqrt{5}+\sqrt{5}-1\)

\(=5\sqrt{5}-1\)

28 tháng 7 2016

Hỏi đáp Toán

6 tháng 12 2021

\(=5\sqrt{2}-9\sqrt{5}-6\sqrt{2}+10\sqrt{5}=\sqrt{5}-\sqrt{2}\)

6 tháng 12 2021

√50−3√45−2√18+5√20

= 5√2–9√5–6√2+10√5

=√5–√2

7 tháng 11 2021

1. \(=\left(6\sqrt{2}-3\sqrt{2}+\dfrac{5\sqrt{2}}{2}+5\sqrt{2}\right).3\sqrt{2}=\left(8\sqrt{2}+\dfrac{5\sqrt{2}}{2}\right).3\sqrt{2}=8\sqrt{2}.3\sqrt{2}+\dfrac{5\sqrt{2}}{2}.3\sqrt{2}=48+15=63\)

2. \(\Leftrightarrow\left|2x-1\right|=7\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=-7\\2x-1=7\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

20 tháng 8 2019

a) 2 50 - 3 98 + 4 32 - 5 72

= 10 2 - 21 2  + 16 2  - 30 2

= -25 2

3 tháng 1 2021

1.

\(\sqrt{50}-3\sqrt{8}+\sqrt{32}=5\sqrt{2}-6\sqrt{2}+4\sqrt{2}=3\sqrt{2}\)

2. 

a, ĐK: \(x\in R\)

\(pt\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\)

\(\Leftrightarrow\left|x-2\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

b, ĐK: \(x\ge3\)

\(pt\Leftrightarrow\sqrt{x-3}\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(l\right)\end{matrix}\right.\)