K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

giải thì biết giải nhưng khi nào thích đã anh bạn à


 

Làm ơn giúp mình với. À mà mình con gái chứ không phải anh bạn đâu.

27 tháng 3 2019

A B C D E

a, Xét : \(\Delta ABD\)và \(\Delta EBD\)có :

\(\widehat{BAD}=\widehat{BED}\left(=90^o\right)\)

\(BD\)chung

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)

b, Theo câu a, ta có :

\(\Delta ABD=\Delta EBD\left(cmt\right)\)

\(\Rightarrow AB=EB\)( cặp cạnh tương ứng )

\(\Rightarrow\Delta ABE\)là tam giác cân

Lại có : \(\widehat{B}=60^o\)

\(\Rightarrow\Delta ABE\)là tam giác đều 

c, Do : \(\Delta ABE\)đều 

\(\Rightarrow AB=BE=5\left(cm\right)\)

Do : \(BD\)là phân giác của \(\widehat{B}\)

\(\Rightarrow\widehat{ABD}=\widehat{EBD}=\frac{1}{2}60^o=30^o\)

Xét : \(\Delta BDE\)có : \(\widehat{BDE}=180^o-90^o-30^o=60^o\)

Lại có : \(\widehat{BDE}=\widehat{BDA}\left(\Delta ABD=\Delta EBD\right)\)

\(\Rightarrow\widehat{BDA}=60^o\Rightarrow\widehat{EDC}=180^o-60^o-60^o=60^o\)

Xét : \(\Delta BDE\)và \(\Delta CDE\)có : 

\(\widehat{BED}=\widehat{CED}\left(=90^o\right)\)

\(DE\)chung

\(\widehat{BDE}=\widehat{CDE}\left(=60^o\right)\)

\(\Rightarrow\Delta BDE=\Delta CDE\left(g.c.g\right)\)

\(\Rightarrow BE=CE=5\left(cm\right)\)

\(\Rightarrow BC=BE+EC=5+5=10\left(cm\right)\)

Vậy : \(BC=10\left(cm\right)\)

31 tháng 3 2019

                                 Lời giải

\(\left(a-1\right)^2\ge0\Rightarrow a^2-2a+1\ge0\Rightarrow a^2+1\ge2a\)

Suy ra \(\frac{a}{a^2+1}\le\frac{a}{2a}=\frac{1}{2}^{\left(đpcm\right)}\)

31 tháng 3 2019

Để \(\frac{x-1}{x+1}\)lớn hơn 0 \(\Leftrightarrow x\)khác -1  

Trường hợp 1 \(\Rightarrow\hept{\begin{cases}x-1>0\\x+1>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x>-1\end{cases}}\)\(\Rightarrow x>1\)

\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x-1>0\\x+1>0\end{cases}}\\\hept{\begin{cases}x-1< 0\\x+1< 0\end{cases}}\end{cases}}\)trường hợp 2 \(\Rightarrow\hept{\begin{cases}x-1< 0\\x+1< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x< -1\end{cases}}\)\(\Rightarrow x< -1\)

kết hợp 2 tập nghiệm ta có nghiệm là x>1 và x<-1

Đổi |1+x|=|-1-x|

\(\Rightarrow A=\left|x\right|+\left|-1-x\right|\)

Áp dụng BĐTGTTĐ |A|+|B|\(\ge\)|A+B|

\(\Rightarrow A=\left|x\right|+\left|-1-x\right|\)\(\ge\left|x+\left(-1\right)-x\right|=1\)

Dấu = xảy ra khi x.(-1-x)\(\ge\)0

Suy ra \(\hept{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy Min A= 1 \(\Leftrightarrow\)x=\(\hept{\begin{cases}0\\-1\end{cases}}\)

K chắc lắm sai bỏ qua nhá 

|x|\(\ge x\)

\(\left|1+x\right|\ge1+x\)

Do đó A\(\ge x+1+x=1\)

Min A = 1 Khi \(1\ge x\ge0\)

( Sai thì thôi nha ) . Dù gì cũng k mình với 

27 tháng 3 2019

Hình bạn tự vẽ nhé

a) Xét tam giác ABD và tam giác ACE ta có: 

\(\hept{\begin{cases}\widehat{BAC}-chung\\\widehat{BDA}=\widehat{CEA}=90^o\end{cases}}\Rightarrow\Delta ABD~\Delta ACE\left(g.g\right)\)

b) H là giao điểm của BD và CE suy ra H là trực tâm của tam giác ABC

=> AH là đường cao thứ 3 của tam giác ABC => \(AH\perp BC\)

Xét \(\Delta CEB\) và \(\Delta CKH\) ta có:

\(\hept{\begin{cases}\widehat{CEB}=\widehat{CKH}=90^o\\\widehat{ECB}-chung\end{cases}}\Rightarrow\Delta CEB~\Delta CKH\left(g.g\right)\Rightarrow\frac{CE}{CK}=\frac{BC}{CH}\Rightarrow CE.CH=BC.CK\)(1)

c) Ta có: Xét \(\Delta BKH\) và \(\Delta BDC\) ta có:

\(\hept{\begin{cases}\widehat{DBC}-chung\\\widehat{HKB}=\widehat{BDC}=90^o\end{cases}}\Rightarrow\frac{BK}{BD}=\frac{BH}{BC}\Rightarrow BK.BC=BH.BD\)(2)

Cộng theo vế của (1) và (2):

\(BH.BD+CH.CE=BC\left(CK+BK\right)=BC^2\left(đpcm\right)\)

Trả lời : Mk có 1 bài nè :

Giải và biện luận bất phương trình sau : (m+2).x > (m+2).(m-5)

Hok_Tốt

#Thiên_Hy

KO

ĐĂNG

CÂU

HỎI

LINH

TINH

LÊN

DIỄN

ĐÀN

11 tháng 12 2021

trong olm để hỏi các môn liên quan tới học chứ không nên chia sẽ lập trình

14 tháng 12 2021

Mình nghĩ câu này là Tin học chứ không phải Toán

9 tháng 12 2018

\(A=\frac{x}{x-1}+\frac{x}{x+1}+\frac{2x^2}{1-x^2}\)

\(A=\frac{x}{x-1}+\frac{x}{x+1}+\frac{-2x^2}{x^2-1}\)

\(A=\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{-2x^2}{\left(x+1\right)\left(x-1\right)}\)

\(A=\frac{x^2+x+x^2-x-2x^2}{\left(x+1\right)\left(x-1\right)}=\frac{1}{\left(x+1\right)\left(x-1\right)}\)

đề s ý 

Đề đúng mà bạn