Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a (3x-2y)2= (3x)2 - 2. 3x . 2y - (2y)2 = 9x2 - 12xy - 4y2
2.b (2x - 1/2)2 = (2x)2 - 2.2x.1/2 - (1/2)2= 4x2 - 2 - 1/4
3.c (x/2 - y) (x/2+y)= (x/2)2 - (y)2 = x/4 - y2
Bài 1 :
\(\left(3x-2y\right)^2=9x^2-12xy+4y^2\)
\(\left(2x-\frac{1}{2}\right)^2=4x^2-4x+\frac{1}{4}\)
\(\left(\frac{x}{2}-y\right)\left(\frac{x}{2}+y\right)=\frac{x^2}{4}-y^2\)
\(\left(x+\frac{1}{3}\right)^3=x^3+x^2+\frac{1}{3}x+\frac{1}{27}\)
\(\left(x-2\right)\left(x^2+2x+2^2\right)=x^3-8\)
Bài 1:
a) Ta có: \(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
\(=\frac{2x}{x\left(x+2y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2}{x+2y}+\frac{y}{x-2y}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2\left(x-2y\right)}{\left(x+2y\right)\left(x-2y\right)}+\frac{y\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2x-4y+xy+2y^2+4}{\left(x-2y\right)\cdot\left(x+2y\right)}\)
b) Ta có: \(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\frac{\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{2x-2y}{x^2+xy+y^2}\)
c) Ta có: \(\frac{xy}{2x-y}-\frac{x^2-1}{y-2x}\)
\(=\frac{xy}{2x-y}+\frac{x^2-1}{2x-y}\)
\(=\frac{x^2+xy-1}{2x-y}\)
d) Ta có: \(\frac{2\left(x+y\right)\left(x-y\right)}{x}-\frac{-2y^2}{x}\)
\(=\frac{2\left(x^2-y^2\right)+2y^2}{x}\)
\(=\frac{2x^2-2y^2+2y^2}{x}\)
\(=\frac{2x^2}{x}=2x\)
Bài 2:
a) Ta có: \(\frac{4x+1}{2}-\frac{3x+2}{3}\)
\(=\frac{3\left(4x+1\right)}{6}-\frac{2\left(3x+2\right)}{6}\)
\(=\frac{12x+3-6x-4}{6}\)
\(=\frac{6x-1}{6}\)
b) Ta có: \(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)
\(=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{x^2-9-x^2+9}{x\left(x-3\right)}=\frac{0}{x\left(x-3\right)}=0\)
c) Ta có: \(\frac{x+3}{x^2+1}-\frac{1}{x^2+2}\)
\(=\frac{\left(x+3\right)\left(x^2+2\right)}{\left(x^2+1\right)\left(x^2+2\right)}-\frac{x^2+1}{\left(x^2+2\right)\left(x^2+1\right)}\)
\(=\frac{x^3+2x+3x^2+6-x^2-1}{\left(x^2+1\right)\left(x^2+2\right)}\)
\(=\frac{x^3+2x^2+2x+5}{\left(x^2+1\right)\left(x^2+2\right)}\)
e) Ta có: \(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}\)
\(=\frac{3}{2x\left(x+1\right)}+\frac{2x-1}{\left(x+1\right)\left(x-1\right)}-\frac{2}{x}\)
\(=\frac{3\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}+\frac{2x\left(2x-1\right)}{2x\left(x+1\right)\left(x-1\right)}-\frac{2\cdot2\cdot\left(x+1\right)\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}\)
\(=\frac{3x-3+4x^2-2x-4\left(x^2-1\right)}{2x\left(x+1\right)\left(x-1\right)}\)
\(=\frac{4x^2+x-3-4x^2+4}{2x\left(x+1\right)\left(x-1\right)}\)
\(=\frac{x+1}{2x\left(x+1\right)\left(x-1\right)}=\frac{1}{2x\left(x-1\right)}\)
d) Ta có: \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)
\(=\frac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\frac{4\left(3x-2\right)}{\left(3x+2\right)\left(3x-2\right)}-\frac{-10x+8}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\frac{3x+2-12x+8+10x-8}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\frac{x+2}{\left(3x-2\right)\left(3x+2\right)}\)
f) Ta có: \(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x-y\right)}\)
\(=\frac{3x\cdot2\cdot\left(x-y\right)}{10\left(x+y\right)\left(x-y\right)}-\frac{x\cdot\left(x+y\right)}{10\left(x-y\right)\left(x+y\right)}\)
\(=\frac{6x^2-6xy-x^2-xy}{10\left(x-y\right)\left(x+y\right)}\)
\(=\frac{5x^2-7xy}{10\left(x-y\right)\left(x+y\right)}\)
Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)
\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)
Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)
\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)
\(P=\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)
\(=\frac{x^2+5x+y^2+5y+2xy-6}{x^2+6x+y^2+6y+2xy}\)
\(=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{\left(x+y\right)^2+6\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(x+y+5\right)-6}{\left(x+y\right)\left(x+y+6\right)}\)
\(=\frac{2005\times\left(2005+5\right)-6}{2005\times\left(2005+6\right)}\)
\(=\frac{2005\times2010-6}{2005\times2011}\)
\(=\frac{2004}{2005}\)