Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x7-x4+2x3-3x4-x2+x7-x+5-x3
= 5-x-x2+(2x3-x3)-(x4+3x4)+(x7+x7)
= 5-x-x2+x3-4x4+2x7
Hệ số cao nhất là 2. Hệ số tự do là 5
b) 2x2-3x4-3x2-4x5-\(\dfrac{1}{2}\)x-x2+1
= 1-\(\dfrac{1}{2}\)x+(2x2-3x2-x2)-3x4-4x5
= 1-\(\dfrac{1}{2}\)x-2x2-3x4-4x5
Hệ số cao nhất là -4. Hệ số tự do là 1
a) \(3x^5-2x^2+x^4-\dfrac{1}{2}x-x^5+x^2-3x^4-1\)
\(=2x^5-x^2-2x^4-\dfrac{1}{2}x-1\)
\(=1-\dfrac{1}{2}x-x^2-2x^4+2x^5\)
Đa thức bậc 5, hệ số cao nhất là 2, hệ số tự do là -1.
b) \(2x^4-2x^2+4x^5+3x^2-x+x^2+1-x^4-2x^5\)
\(=x^4+2x^2+2x^5-x+1\)
\(=1-x+2x^2+x^4+2x^5\)
Đa thức bậc 5, hệ số cao nhất là 2, hệ số tự do là 1.
a) \(P\left(x\right)=2+5x^2-3x^2+4x^2-2x-x^3+6x^5\)
\(P=6x^5-x^3+\left(5x^2-3x^2+4x^2\right)-2x+2\)
\(P=6x^5-x^2+6x^2-2x+2\)
b) Hệ số khác 0 của đa thức P(x): 6; -1; 6; -2; 2
\(P\left(x\right)=2+5x^2-3x^3+4x^2-2x-x^3+6x^5\)
\(P\left(x\right)=6x^5-3x^3-x^3+5x^2+4x^2-2x+2\)
\(P\left(x\right)=6x^5-4x^3+9x^2-2x+2\)
b) Hệ số lũy thừa khác 0 bậc 0 của đa thức P(x) là 2
Hệ số lũy thừa khác 0 bậc 1 của đa thức P(x) là -2
Hệ số lũy thừa khác 0 bậc 2 của đa thức P(x) là 9
Hệ số lũy thừa khác 0 bậc 3 của đa thức P(x) là -4
Hệ số lũy thừa khác 0 bậc 5 của đa thức P(x) là 6
Ta có P(x) = 2 + 5x2 – 3x3 + 4x2 – 2x – x3 + 6x5.
a) Thu gọn P(x) = 2 + 9x2 – 4x3 - 2x + 6x5
Sắp xếp theo thứ tự giảm của biến:
P(x) = 6x5 – 4x3 + 9x2 – 2x + 2
b) Hệ số lũy thừa bậc 5 là 6
Hệ số lũy thừa bậc 3 là -4
Hệ số lũy thừa bậc 2 là 9
Hệ số lũy thừa bậc 1 là -2
Hệ số lũy thừa bậc 0 là 2.
a) - Thu gọn đa thức P(x):
\(P\left(x\right)=2+3x^2-3x^3+5x^4-2x-x^3+7x^5=2+3x^2-\left(3x^3+x^3\right)+5x^4-2x+7x^5\) \(=2+3x^2-4x^3+5x^4-2x+7x^5\)
- Sắp xếp các hạng tử của P(x) theo lũy thừa giảm dần của biến:
\(P\left(x\right)=7x^5+5x^4-4x^3+3x^3-2x+2\)
b) Các hệ số khác 0 của đa thức P(x):
\(7;5;-4;3;-2;2\)
a)
Thu gọn các hạng tử của P(x) là:
\(P\left(x\right)=\left(-3x^3-x^3\right)+2+3x^2+5x^4+7x^5+-2x\)
\(\Rightarrow P\left(x\right)=-4x^3+2+3x^3+5x^4-2x+7x^5\)
Sắp xếp các hạng tử của P(x) theo lũy thừa giảm của biến là:
\(P\left(x\right)=7x^5+5x^4-4x^3+3x^2-2x+2\)
b)
Các hệ số khác 0 của đa thức P(x) là:
\(7x^5,5x^4,-4x^3,3x^2,-2x,2\)
Chúc bạn học tốt!
a, f(y)=4y6−6y2−3y4−3+4y4−4y6+5y
=\(^{y^4-6y^2+5y-3}\)
b, f(0)=\(^{0^4-6.0^2+5.0-3}\)
=-3
f(\(\dfrac{1}{2}\))=(\(\left(\dfrac{1}{2}\right)^4-6.\left(\dfrac{1}{2}\right)^2+5.\dfrac{1}{2}-3\)
=\(\dfrac{1}{16}-\dfrac{3}{2}+\dfrac{5}{2}-\dfrac{6}{2}\)
=\(\dfrac{1}{16}-\dfrac{24}{16}+\dfrac{40}{16}-\dfrac{48}{16}\)
=\(\dfrac{-31}{16}\)
c, A(y)=f(y)+k(y)
=(\(^{y^4-6y^2+5y-3}\))+(\(4y^2-y^4\)
=\(2y^2+5y-3\)
Xin lỗi ad nhìu nha :(( ý d tui hơm nhớ cách làm nên hông dám chỉ bậy:)
a) \(M\left(x\right)=-2x^5+5x^2+7x^4-5x+8+2x^5-7x^4-4x^2+6\)
\(=\left(-2x^5+2x^5\right)+\left(7x^4-7x^4\right)+\left(5x^2-4x^2\right)-9x+\left(8+6\right)\)
\(=x^2-9x+14\)
\(N\left(x\right)=7x^7+x^6-5x^3+2x^2-7x^7+5x^3+3\)
\(=\left(7x^7-7x^7\right)+x^6-\left(5x^3-5x^3\right)+2x^2+3\)
\(=x^6+2x^2+3\)
b) Đa thức M(x) có hệ số cao nhất là 1
hệ số tự do là 14
bậc 2
Đa thức N(x) có hệ số cao nhất là 1
hệ số tự do là 3
bậc 6