Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(\dfrac{1}{2^3}.3.\dfrac{13}{3}\right)\left(a^{3+2+1}\right)\left(x^{1+3}\right)\left(y^{1+2}\right)=\dfrac{13}{8}.a^6.x^4.y^3\)
\(B=\left[2^k.\left(-\dfrac{1}{2}\right)^2\right]\left(x^{2k+2}\right)\left(y^{3k+2.2}\right)\left(z^{4k+}\right)=2^{k-2}.x^{2\left(k+1\right)}.y^{3k+4}.z^{4k}\)
a) (-a/2)3xy(4a2x3)(13/3ay2)
=(4.13/3.3)(x.x3)(y.y2)(-a/2.a2.a)
=52x4y3(-a)3/2
c)(7/3x2y3)10(3/7x5y4)10
=(7/3)10.(3/7)10.(x20.x50).(y30.y40)
= x70.y70
a) \(\left(2\frac{1}{3}x^2y^3z\right)^{10}.\left(\frac{-3}{7}x^5y^4z^2\right)^{10}.axyz\)
=\(\left(2\frac{1}{3}x^2y^3z.\frac{-3}{7}x^5y^4z^2\right)^{10}.axyz\)
=\(\left(\frac{7}{3}.\frac{-3}{7}x^2.x^5.y^3.y^4.z.z^2\right)^{10}.axyz\)
=\(\left(-1.x^7y^7z^3\right)^{10}.axyz\)
=\(x^{70}.y^{70}z^{30}.axyz\)
=\(a.x^{71}.y^{71}.z^{31}\)
PHS: a
PB: x71.y71.z31
Bậc: 173
\(\left(2x^2y^3z^4\right)^k.\left(-\frac{1}{2}xy^2\right)^2\)
\(=2^kx^{2k}y^{3k}z^{4k}.\frac{1}{4}x^2y^4\)
\(=\left(2^k.\frac{1}{4}\right)\left(x^{2k}.x^2\right)\left(y^{3k}.y^4\right).z^{4k}\)
\(=2^{k-2}x^{2k+2}y^{3k+4}z^{4k}\)
_ Hệ số: \(2^{k-2}\)
- Phần biến: \(x^{2k+2}y^{3k+4}z^{4k}\)
- Bậc : \(9k+6\)