Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
+ \(\omega = \frac{2\pi}{T} = \frac{2\pi}{2} = \pi\) (rad/s)
+ Nhận xét: Trong 2s = 1T, vật đi quãng đường 4.A = 40 cm, \(\Rightarrow\) A=10cm.
+ t = 0, vật qua VTCB theo chiều dương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ \\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)
Vậy phương trình: \(x = 10cos(\pi t -\frac{\pi}{2})\) (cm)
Bạn vẽ véc tơ quay ra để tìm nhé.
> M N 5 -5 -2,5 2,5 O
Dao động từ -2,5cm đến 2,5cm ứng với véc tơ quay từ M đến N
Góc quay là: \(60^0\)
Thời gian: \(t=\dfrac{60}{360}T=\dfrac{1}{6}.\dfrac{2\pi}{4\pi}=\dfrac{1}{12}s\)
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
Đáp án A
+ Thời gian ngắn nhất để vật đi từ vị trí cân bằng đến vị trí x = 0,5A là Δt = T 12