Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
\(\Rightarrow\frac{1}{3,5}< \frac{1}{n}< \frac{1}{1,75}\)
\(\Rightarrow3,5>n>1,75\)
\(\Rightarrow\)n \(\in\){ 2 ; 3 }
\(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
\(\Rightarrow n=2\)
Câu 2:
+) TH1: \(3x-6\ge0\Rightarrow3x\ge6\Rightarrow x\ge2\)
Khi đó \(3x-6=x+2\)
\(\Rightarrow3x-x=6+2\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\)
+) TH2: \(3x-6< 0\Rightarrow3x< 6\Rightarrow x< 2\)
Khi đó: \(-3x+6=x+2\)
\(\Rightarrow-3x-x=-6+2\)
\(\Rightarrow-4x=-4\)
\(\Rightarrow x=1\)
Vậy \(\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\).
Câu 3:
x.x=64=>x=8 hoặc x=-8 mà x.x.x<0 =>x<0
Vậy x=-8
Câu 5:
ta có: nghiệm của đa thức f(x)=x^4 - 16 =0
=> x^4 = 16
=> x= 2 hoặc x= -2
Câu 6:
ta có: f(x1) + f(x2) = 2.x1 + 3 + 2.x2 +3
= 2.(x1 + x2) + 3+ 3
=2.5+6
=16
vậy f(x1) + f(x2)=16
Câu 7:
vì đa thức f(x) =a.x + b có nghiệm x = 1
=> a.1 + b = 0
=> a+b=0 (1)
vì f(0) =5 => a.0+b= 5
=> 0+b = 5
=> b = -5
từ (1) ta có: a+ (-5)=0
=>a=5
vậy a=5 và b=-5
Câu 1:
\(x^2=64\\ Mà:\left[{}\begin{matrix}8^2=64\\\left(-8\right)^2=64\end{matrix}\right.\\ Mặtkhác:x^3< 0\\ =>x< 0\\ =>\left[{}\begin{matrix}x=8\left(Loại\right)\\x=-8\left(TMĐK\right)\end{matrix}\right.\)
Vậy: x= -8
Câu 6:
\(f\left(x\right)=x^4-16\\ < =>f\left(x\right)=\left(x^2\right)^2-4^2\\ < =>f\left(x\right)=\left(x^2-4\right)\left(x^2+4\right)\\ < =>f\left(x\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\\ =>\left[{}\begin{matrix}x-2=0\\x+2=0\\x^2+4=0\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy: f(x) có 2 nghiệm .
\(\left(1\right)\left\{{}\begin{matrix}x^2=64\\x^3< 0\end{matrix}\right.\) \(\left\{{}\begin{matrix}x=\pm8\\x< 0\end{matrix}\right.\) =>x=8
\(\left(2\right):...2^{5x-4x}=2^x=2^5=>x=5\)
Theo đề bài, ta có: f(0) = 5 \(\Rightarrow a\times0+b=5\Rightarrow0+b=5\Rightarrow b=5\)
Với b = 5 và f(x) = ax + b có nghiệm x = 1 nên:
\(a\times1+b=0\Rightarrow a+b=0\Rightarrow a+5=0\Rightarrow a=-5\)
Vậy \(a=-5\) và \(b=5\).
Câu 1:
\(x^3< 0\Rightarrow x< 0\)
Mà \(\left|x\right|=2015\)
\(\Rightarrow x=-2015\)
Vậy x = -2015
Câu 3:
\(x^3>0\Rightarrow x>0\)
Mà \(\left(x+3\right)^2=25\)
\(\Rightarrow x+3=5\)
\(\Rightarrow x=2\)
Vậy x = 2
Câu 4:
\(\frac{x}{5}=\frac{20}{x}\Rightarrow x^2=100\Rightarrow x=\pm10\)
Vậy \(x=\pm10\)
Câu 8:
\(\left(-36\right)^{1000}:9^{1000}=2^n\)
\(\Rightarrow\left(-36:9\right)^{1000}=2^n\)
\(\Rightarrow\left(-4\right)^{1000}=2^n\)
\(\Rightarrow2^{2000}=2^n\)
\(\Rightarrow n=2000\)
Vậy n = 200
Câu 9:
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{1}{8}-\frac{y}{4}=\frac{5}{x}\)
\(\Rightarrow\frac{4-8y}{32}=\frac{5}{x}\)
\(\Rightarrow\frac{1-2y}{8}=\frac{5}{x}\)
\(\Rightarrow\left(1-2y\right)x=40\)
Ta có bảng sau:
...
Ta có:
\(f\left(x_1\right)=2x_1+3\)
\(f\left(x_2\right)=2x_2+3\)
\(\Rightarrow f\left(x_1\right)+f\left(x_2\right)=\left(2x_1+3\right)+\left(2x_2+3\right)\)
\(\Rightarrow f\left(x_1\right)+f\left(x_2\right)=\left(2x_1+2x_2\right)+\left(3+3\right)\)
\(\Rightarrow f\left(x_1\right)+f\left(x_2\right)=2\times\left(x_1+x_2\right)+6\)
\(\Rightarrow f\left(x_1\right)+f\left(x_2\right)=2\times5+6\)
\(\Rightarrow f\left(x_1\right)+f\left(x_2\right)=10+6\)
\(\Rightarrow f\left(x_1\right)+f\left(x_2\right)=16\)
Vậy \(f\left(x_1\right)+f\left(x_2\right)=16\).