K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2016

cái này đâu có phải của lớp 1

7 tháng 5 2016
toán lớp 1 mà khó muốn phát điên luôn, bạn nên chọn lớp chính xác để ai biết giải cho, hs lớp 1 ko làm được bài đó đâu
10 tháng 8 2019

tth_new             

\(a^3+b^3+c^3=\left(a+b+c\right)^3\)nha !

Học tốt !

28 tháng 10 2018

toán lớp 1 gì mà ảo diệu quá...

28 tháng 10 2018

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}=\frac{a^4}{ab+ac}+\frac{b^4}{ab+bc}+\frac{c^4}{ac+bc}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}\)

\(=\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)

3 tháng 1 2020

Dạng này dùng hệ số bât định làm gì cho mệt?

25 tháng 7 2020

Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)

Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3

25 tháng 7 2020

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)

\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)

\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)

7 tháng 10 2019

Sửa đề: \(a;b;c\ge0\) (nếu không thì không có max đâu cu!)

Ta có: \(P=a\left(b-c\right)\le ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{2};c=0\)

Vậy..

18 tháng 4 2022

Câu A là 21 theo dãy Fibonacci nhớ

còn mấy câu kia

 

Cho hỏi bạn hỏi hay trả lời vậy??????????????????

Ko đăng linh tinh ngoài câu hỏi nha!