Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^3+y^3=9< =>\left(x+y\right)\left(x^2-xy+y^2\right)=9\)
\(< =>x^2-xy+y^2=3\)
\(< =>\left(x+y\right)^2-3xy=3\)
\(< =>3xy=6< =>xy=2\)
giờ bạn chỉ cần giải hpt đơn giản này là đc nhé
Ta có : pt 1 <=> xy(x+y) = 2
kết hợp với pt 2 ta được \(x^2y^2+xy+1=3xy\)
\(< =>\left(xy+2\right)^2-\sqrt{3}^2=0\)
\(< =>\left(xy+2-\sqrt{3}\right)\left(xy+2+\sqrt{3}\right)=0\)
\(< =>\orbr{\begin{cases}xy=2-\sqrt{3}\\xy=2+\sqrt{3}\end{cases}}\)
đến đây dễ r , sai chỗ nào bạn chỉ mình nhé
(1)=x^3-y^3=7
<=>(x-y)(x^2+y^2+xy)=7
<=>(X-y)^3+3xy(x-y)=7
thay(2)vào
=>(x-y)^3+3.2=7
=>x-y=1
thay vào (2)=>=xy=2
=>y^2+y-2=0
___y=1 &-2
=>x=2&-1
(1)=x^3-y^3=7
<=>(x-y)(x^2+y^2+xy)=7
<=>(X-y)^3+3xy(x-y)=7
thay(2)vào
=>(x-y)^3+3.2=7
=>x-y=1
thay vào (2)=>=xy=2
=>y^2+y-2=0
y=1 &-2
=>x=2&-1
Trả lời:
a, \(2\sqrt{45}+\sqrt{5}-3\sqrt{80}\)
\(=2\sqrt{3^2.5}+\sqrt{5}-3\sqrt{4^2.5}\)
\(=2.3\sqrt{5}+\sqrt{5}-3.4\sqrt{5}\)
\(=6\sqrt{5}+\sqrt{5}-12\sqrt{5}=-5\sqrt{5}\)
c, \(\left(\frac{3-\sqrt{3}}{\sqrt{3}-1}-\frac{2-\sqrt{2}}{1-\sqrt{2}}\right):\frac{1}{\sqrt{3}+\sqrt{2}}\)
\(=\left[\frac{\left(3-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}-\frac{\left(2-\sqrt{2}\right)\left(1+\sqrt{2}\right)}{1-2}\right].\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\left(\frac{3\sqrt{3}+3-3-\sqrt{3}}{2}-\frac{2+2\sqrt{2}-\sqrt{2}-2}{-1}\right).\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\left(\frac{2\sqrt{3}}{2}+\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\frac{2\sqrt{3}+2\sqrt{2}}{2}.\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\frac{\left(2\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{2}=\frac{6+2\sqrt{6}+2\sqrt{6}+4}{2}=\frac{10+4\sqrt{6}}{2}=5+2\sqrt{6}\)
6. \(\hept{\begin{cases}x^2-3x=y\\y^2-3y=x\end{cases}}\)
\(\Rightarrow x^2-3y-y^2+3x=y-x\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+3\left(x-y\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y+3+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x+y+4=0\end{cases}}\)
TH1 : x - y = 0 <=> x = y ta có : \(x^2-3x=x\) \(\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0=y\\x=4=y\end{cases}}\)
TH2 : x + y + 4 = 0 <=> y = -4-x ta có : \(x^2-3x=-x-4\)
\(\Leftrightarrow x^2-2x+4=0\)
\(\Leftrightarrow\left(x-1\right)^2+3=0\left(vonghiem\right)\)
12. \(\hept{\begin{cases}x^3+x^2y=10y\\y^3+xy^2=10x\end{cases}}\)
\(\Leftrightarrow x^3-y^3+x^2y-xy^2=10y-10x\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)+10\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2xy+y^2+10\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\left(x+y\right)^2+10\right]=0\)
mà có \(\left(x+y\right)^2+10>0\)
\(\Rightarrow x-y=0\Leftrightarrow x=y\)
ta có : \(x^3+x^3=10x\)
\(\Leftrightarrow2x^3-10x=0\Leftrightarrow2x\left(x^2-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0=y\\x=\pm\sqrt{5}=y\end{cases}}\)
mấy cái hệ đối xứng này lấy pt trên trừ dưới là ra thôi, thể nào cũng có nghiệm x=y