Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Phương Còi - Toán lớp 6 - Học toán với OnlineMath
Ta có : \(135abc=135\cdot1000+abc\)
mà \(135abc:abc=626\)
\(\Rightarrow(135\cdot1000+abc):abc=626\)
\(\Rightarrow(135000+abc):abc=626\)
\(\Rightarrow135000:abc+1=626\)
\(\Rightarrow135000:abc=625\)
\(\Rightarrow abc=135000:625=216\)
Thử lại : \(135216:216=626\)đúng
Vậy a = 2,b = 1,c = 6
10 . Ta có \(\overline{120ab}\) = 12000 + \(\overline{ab}\)
Theo đề suy ra: 12000 + \(\overline{ab}\) = 376.\(\overline{ab}\)
Suy ra 12000 = 376.\(\overline{ab}\) - \(\overline{ab}\)
Nên 12000 = 375.\(\overline{ab}\)
Vậy \(\overline{ab}\) = 32
11. \(\overline{206abc}=501.\overline{abc}\)
Suy ra \(206000+\overline{abc}=501.\overline{abc}\)
Nên 206000 = 500.\(\overline{abc}\)
Vậy \(\overline{abc}\) = 412
Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) (dấu bằng xảy ra khi và chỉ khi x=y)
Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y
Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010
Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y
Nên: \(x=y=987\)
Max x+y=\(\sqrt{4\cdot987^2}=1974\)
Không viết đúng không
:v
Mình xem đáp án là 1328 với lại mình gõ nhầm;
abc, def là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .
ta có thể tách abcabc = abc . 1000 + abc (bạn thử đi đúng đấy!!!) ( nhớ abcabc phải có gạch trên đầu nha)
<=> abcabc = abc . (1000 + 1) = abc . 1001
Suy ra a . bcd . abc = abcabc
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Vậy tóm lại a = 7 ; b = 1 ; c = 4 ; d = 3
tích thử lại là 7 . 143 . 714 = 714714 ( chính xác )
Chúc học tốt môn toán!!!!!!!!!!!!!!!!
a)
\(\overline{5\circledast8}⋮3khi\left(5+\circledast+8\right)⋮3\Rightarrow\left(13+\circledast\right)⋮3\)
\(\Rightarrow\circledast\) = 2 hoặc \(\circledast\) = 5 hoặc \(\circledast\) = 8.
Vậy chữ số thay cho \(\circledast\) là 2 hoặc 5 hoặc 8.
b)
\(\overline{6\circledast3}⋮9khi\left(6+3+\circledast\right)⋮9\Rightarrow\left(9+\circledast\right)⋮9\)
\(\Rightarrow\circledast\) = 0 hoặc \(\circledast\) = 9.
Vậy chữ số thay \(\circledast\) là 0 hoặc 9
c)
\(\overline{43\circledast}⋮3khi\left(4+3+\circledast\right)⋮3\Rightarrow\circledast=2\text{hoặc}\circledast=5\text{hoặc}\circledast=8\left(1\right)\)
\(\overline{43\circledast}⋮5khi\circledast=0\text{hoặc}\circledast5\)
Vì \(\circledast\) phải thỏa mãn (1) và ( 2) nên \(\circledast\) = 5.
d)
Vì \(\overline{\circledast81\circledast}⋮5\) nên dấu \(\circledast\) ở hàng đơn vị phải bằng 0 hoặc 5
Mà \(\overline{\circledast81\circledast}⋮2\) nên dấu \(\circledast\) ở hàng đơn vị phải bằng 0 ( vì 5 là số lẻ ) . Thay vào ta được số : \(\overline{\circledast810}\)
Để \(\overline{\circledast810}⋮9\) thì \(\left(\circledast+8+1+0\right)⋮9=\left(\circledast+9\right)\Rightarrow\circledast=0\text{hoặc}\circledast=9\)
Mà \(\circledast\) lại là số ở hàng nghìn (là số đầu tiên) nên \(\circledast\) ≠ 0. Do đó \(\circledast\) = 9
Vậy ta được số 9810
\(\overline{135abc}:\overline{abc}=626\\\left(135000+\overline{abc}\right):\overline{abc}=626\\ 135000:\overline{abc}+\overline{abc}:\overline{abc}=626\\ 135000:\overline{abc}+1=626\\ 135000:\overline{abc}=625\\ \overline{abc}=135000:625\\ \overline{abc}=216 \) (Thỏa mãn điều kiện đề bài cho)
Vậy a=2, b=1 và c=6