K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}...\cdot\frac{98}{99}\cdot\frac{99}{100}\)

\(=\frac{1}{100}\)

#

3 tháng 9 2018

\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.....\frac{98}{99}.\frac{99}{100}\)

\(=\frac{1.2.3.4.....98.99}{2.3.4.5.....99.100}\)

\(=\frac{1}{100}\)

\(\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x\frac{4}{5}x........x\frac{99}{100}\)

\(\frac{1x2x3x4x........x99}{2x3x4x5x.......x100}\)

=> \(\frac{1}{100}\)

31 tháng 3 2017

quá dễ

22 tháng 11 2017

sfdsa

22 tháng 11 2017

VÌ 1/1.1/3.......1/99=2/51.2/52.........2/100

VÀ   2/51.2/52.....2/100=1/1.1/3.......1/99

SUY RA BẰNG NHAU

17 tháng 3 2016

Ta có: 

\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)

\(=\frac{1}{2}.\frac{4}{6}.\frac{9}{12}....\frac{9801}{9900}.\frac{10000}{10100}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}=\frac{1.2.3...99.100}{2.3.4...100.101}=\frac{1}{101}\)(Tối giản)

5 tháng 4 2017

ta gọi \(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\)là A

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(\Leftrightarrow1.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\right)\)

\(\Rightarrow A=1-\frac{1}{10}=\frac{9}{10}\)

ta gọi B là biểu thức thứ2

\(B=\frac{2.2}{3}\times\frac{3.3}{2.4}\times\frac{4.4}{3.5}\times...\times\frac{10.10}{9.11}\)

\(\Rightarrow\)2 x \(\frac{10}{11}\)\(=\frac{20}{11}\)

\(\Rightarrow\)\(x+\frac{9}{10}=\frac{20}{11}+\frac{9}{110}\)

\(\Rightarrow x=1\)

mk nghĩ vậy bạn ạ, mk mong nó đúng

19 tháng 3 2019

biết làm bài 1 thôi

\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\cdot\cdot\cdot\times\left(\frac{1}{999}+1\right)\)

\(\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times\cdot\cdot\cdot\times\frac{1000}{999}\)

lượt bỏ đi còn :

\(\frac{1000}{2}=500\)

13 tháng 8 2016

\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\cdot\cdot\left(1+\frac{1}{99}\right)\)

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot\cdot\cdot\cdot\frac{100}{99}\)

\(=\frac{100}{2}=50\)

13 tháng 8 2016

\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}\)

\(=\frac{3.4.5...100}{2.3.4...99}\)

\(=\frac{100}{2}\)

\(=50\)

27 tháng 4 2018

\(\frac{3}{2^2}\times\frac{8}{3^2}\times\frac{15}{4^2}\times\frac{24}{5^2}\times...\times\frac{624}{25^2}\)

\(=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times\frac{3.5}{4.4}\times...\times\frac{24.26}{25.25}\)

\(=\frac{1\times2\times3\times...\times24}{2\times3\times4\times...\times25}\times\frac{3\times4\times5\times...\times26}{2\times3\times4\times...\times25}\)

\(=\frac{1}{25}\times13\)

 \(=\frac{13}{25}\)

27 tháng 4 2018

No, Thank!