Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x=-45^0+k90^0,k\in\mathbb{Z}\)
b) \(x=-\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\)
c) \(x=\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)
d) \(x=300^0+k540^0,k\in\mathbb{Z}\)
ĐKXĐ: \(cosx\ne0\Rightarrow x\ne\dfrac{\pi}{2}+k\pi\)
\(\dfrac{tan^2x+tanx}{tan^2x+1}=\dfrac{\sqrt{2}}{2}sin\left(\dfrac{\pi}{4}+x\right)\)
\(\Leftrightarrow cos^2x\left(tan^2x+tanx\right)=\dfrac{\sqrt{2}}{2}\left(sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx\right)\)
\(\Leftrightarrow sin^2x+sinxcosx=\dfrac{1}{2}\left(sinx+cosx\right)\)
\(\Leftrightarrow sinx\left(sinx+cosx\right)-\dfrac{1}{2}\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx-\dfrac{1}{2}\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx+cosx=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\\sqrt{2}.sin\left(x+\dfrac{\pi}{4}\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\\x=\dfrac{-\pi}{4}+k\pi\end{matrix}\right.\)
có thể giải thích rõ ở dấu tương đương 1 và 2 cho em hiểu làm sao để rút gọn nó thành như vậy được không ạ
\(\lim\limits_{x\rightarrow a}\frac{sin\left(\frac{x-a}{2}\right)}{\frac{x-a}{2}}.cos\left(\frac{x+a}{2}\right)=1.cos\left(\frac{a+a}{2}\right)=cosa\)
b/ \(\lim\limits_{x\rightarrow\pi}\frac{sin\frac{\pi}{2}-sin\frac{x}{2}}{\pi-x}=\lim\limits_{x\rightarrow\pi}\frac{sin\left(\frac{\pi-x}{4}\right)}{\frac{\pi-x}{4}}.\frac{cos\left(\frac{\pi+x}{4}\right)}{2}=\frac{cos\left(\frac{\pi+\pi}{4}\right)}{2}=0\)
c/ Đặt \(x-\frac{\pi}{3}=a\Rightarrow x=a+\frac{\pi}{3}\)
\(\lim\limits_{a\rightarrow0}\frac{sina}{1-2cos\left(a+\frac{\pi}{3}\right)}=\lim\limits_{a\rightarrow0}\frac{sina}{1-cosa+\sqrt{3}sina}\)
\(=\lim\limits_{a\rightarrow0}\frac{2sin\frac{a}{2}cos\frac{a}{2}}{-2sin^2\frac{a}{2}+2\sqrt{3}sin\frac{a}{2}cos\frac{a}{2}}=\lim\limits_{a\rightarrow0}\frac{cos\frac{a}{2}}{-sin\frac{a}{2}+\sqrt{3}cos\frac{a}{2}}=\frac{1}{\sqrt{3}}\)
d/Ta có: \(tana-tanb=\frac{sina}{cosa}-\frac{sinb}{cosb}=\frac{sina.cosb-cosa.sinb}{cosa.cosb}=\frac{sin\left(a-b\right)}{cosa.cosb}\)
Áp dụng:
\(\lim\limits_{x\rightarrow a}\frac{\left(tanx-tana\right)\left(tanx+tana\right)}{\frac{sin\left(x-a\right)}{cos\left(x-a\right)}}=\lim\limits_{x\rightarrow a}\frac{sin\left(x-a\right)\left(tanx+tana\right).cos\left(x-a\right)}{sin\left(x-a\right).cosx.cosa}=\lim\limits_{x\rightarrow a}\frac{\left(tanx+tana\right).cos\left(x-a\right)}{cosx.cosa}\)
\(=\frac{2tana}{cos^2a}\)
\(tan\cdot\left(x+\dfrac{\pi}{4}\right)+cot\cdot\left(2x-\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=-cot\cdot\left(2x-\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=cot\cdot\left(-2x+\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=tan\cdot\left(\dfrac{\pi}{2}+2x-\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=tan\cdot\left(\dfrac{\pi}{6}+2x\right)\)
\(\Leftrightarrow x+\dfrac{\pi}{4}=\dfrac{\pi}{6}+2x+k\pi\)
\(\Leftrightarrow-x=\dfrac{-\pi}{12}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{12}-k\pi\left(k\in Z\right)\)
1/
pt<=>tan(3x+2)=tan\(\dfrac{\Pi}{3}\)
<=>x=\(\dfrac{\Pi}{9}\)-\(\dfrac{2}{3}\)+\(\dfrac{k\Pi}{3}\)(k thuộc Z) (*)
mà x\(\in\)(\(-\dfrac{\Pi}{2}\);\(\dfrac{\Pi}{2}\))
<=>\(-\dfrac{\Pi}{2}\)<\(\dfrac{\Pi}{9}\)-\(\dfrac{2}{3}\)+\(\dfrac{k\Pi}{3}\)<\(\dfrac{\Pi}{2}\)(bạn giải bất pt với nghiệm là ''k'' nha)
<=>-1,1296....<k<1,803....
Mà k thuộc Z =>k={-1;01}
Thay các giá trị của k vào (*) ta được:
\(\left[{}\begin{matrix}x=-\dfrac{2\Pi}{9}-\dfrac{2}{3}\\x=\dfrac{\Pi}{9}-\dfrac{2}{3}\\x=\dfrac{4\Pi}{9}-\dfrac{2}{3}\end{matrix}\right.\)
Vậy.............
2/ Là tương tự cho quen nha!
Bài tập này áp dụng công thức phụ - chéo:
cot(a)=tan(\(\dfrac{\Pi}{2}\)-a) (cái này chắc bạn không quên chứ hihi)
Điều kiện: cos(2x+\(\dfrac{\Pi}{4}\))\(\ne\)0<=>x\(\ne\)\(\dfrac{\Pi}{8}\)+\(\dfrac{k\Pi}{2}\)
cos(\(\Pi\)-\(\dfrac{x}{2}\))\(\ne\)0<=>x\(\ne\)\(\Pi\)-2\(\Pi\)
PT<=>tan(2x+\(\dfrac{\Pi}{4}\))=\(\dfrac{1}{tan\left(\Pi-\dfrac{x}{2}\right)}\)
<=>tan(2x+\(\dfrac{\Pi}{4}\))=cot(\(\Pi\)-\(\dfrac{x}{2}\))
<=>tan(2x+\(\dfrac{\Pi}{4}\))=tan(\(\dfrac{\Pi}{2}\)-\(\Pi\)+\(\dfrac{x}{2}\))
<=>2x+\(\dfrac{\Pi}{4}\)=\(\dfrac{\Pi}{2}\)-\(\Pi\)+\(\dfrac{x}{2}\)
<=>x=-\(\dfrac{\Pi}{2}\)+k\(\dfrac{2\Pi}{3}\)(k\(\in\)Z)
Chúc bạn học tốt. Thân!
\(\dfrac{\Pi}{4}\)\(\Pi\)\(\Pi\)