K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

1)

undefined

a) Ta có: góc BAD+góc CAE+góc BAC=180 độ

Mà góc BAC=90 độ nên góc BAD+ góc CAE=90 độ (1)

Vì tam giác ACE vuông tại E nên góc ACE+góc CAE=90 độ(2)

Từ (1) và (2) => góc BAD= góc ACE

Xét tam giác ABD và tam giác ACE có:

góc ADB=góc AED=90 độ

AB=AC ( vì tam giác ABC vuông cân tại A)

góc BAD=góc ACE (cmt)

=> tam giác ABD=tam giác ACE (cạnh huyền-góc nhọn)

b) Theo câu a) Tam giác ABD=tam giác ACE

=> DA=EC và BD=AE

Mà DE=DA+AE nên DE=EC+BD

 

 

5 tháng 8 2016

Cảm ơn bạn nhayeu

 

GIÚP MÌNH  NHÉ MỌI NGƯỜI, BÀI NÀO BIẾT GIÚP MÌNH TRƯỚC CŨNG ĐƯỢC. CẢM ƠN RẤT NHIỀU!!! :"3Bài 1: cho tam giác ABC có góc A tù. Ở miền ngoài tam giác vẽ tam giác vuông cân BAD, CAE, ( đỉnh A). Đường cao AH cắt DE tại M. Chứng minh MD=MEBài 2: cho tam giác ABC, góc BAC = 120độ, đường phân giác trong AD. Từ D hạ DE vuông góc AB, DF vuông góc AC.a) Hãy cho nhận xét về tam giác DEFb) qua C vẽ đường thẳng...
Đọc tiếp

GIÚP MÌNH  NHÉ MỌI NGƯỜI, BÀI NÀO BIẾT GIÚP MÌNH TRƯỚC CŨNG ĐƯỢC. CẢM ƠN RẤT NHIỀU!!! :"3

Bài 1: cho tam giác ABC có góc A tù. Ở miền ngoài tam giác vẽ tam giác vuông cân BAD, CAE, ( đỉnh A). Đường cao AH cắt DE tại M. Chứng minh MD=ME

Bài 2: cho tam giác ABC, góc BAC = 120độ, đường phân giác trong AD. Từ D hạ DE vuông góc AB, DF vuông góc AC.

a) Hãy cho nhận xét về tam giác DEF

b) qua C vẽ đường thẳng song song với AD, nó cắt đường thẳng AB tại M. Hãy cho nhận xét về tam giác ACM

c) Cho biết CM=a,CF=b. Tính AD (a>b)

Bài 3: cho tam giác ABC. Trên nửa mặt phẳng không chứa tia AC có bờ là đường thẳng AB, người ta vẽ AD vuông góc AB và AD=AB. Trên nửa mặt phẳng không chứa tia AB có bờ là đường thẳng AC, vẽ AE vuông góc góc AC và AE=AC. Gọi P,Q,M theo thứ tự là trung điểm của BD,CE và BC. Chứng minh rằng:

a) BE=CD và BE vuông góc CD

b) PQM là tam giác vuông cân

bài 4: trên cạnh bên AB của tam giác ABC cân, người ta lấy điểm D, trên tia đối tia CA lấy điểm E sao cho BD=CE . DE cắt BC ở F. Chứng minh F là trung điểm của DE

0

a)

Xét ΔABD và ΔAED có:

AB=AE (giả thiết)

Góc BAD= góc EAD (do AD là phân giác góc A)

AD chung

⇒⇒ ΔABD=ΔAED (c-g-c)

b) Ta có ΔABD=ΔAED

⇒⇒ BD=DE và góc ABD= góc AED

⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)

Xét ΔDBF và ΔDEC có:

BD=DE

Góc DBF= góc DEC

Góc BDF= góc EDC ( đối đỉnh )

⇒⇒ ΔDBF=ΔDEC (g-c-g)

Bài 1:Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EMa) Chứng minh ( CM ) : tam giác ABM = tam giác ACMb) CM : AM vuông góc BCc) CM : tam giác AEH = tam giác CEMd) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm...
Đọc tiếp

Bài 1:

Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EM

a) Chứng minh ( CM ) : tam giác ABM = tam giác ACM

b) CM : AM vuông góc BC

c) CM : tam giác AEH = tam giác CEM

d) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm H, A, K thẳng hàng

 

Bài 2:

Cho tam giác ABC có góc B < 90 độ. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ tia Bx khác BC, trên tia Bx lấy điểm D sao cho BD = BC. Trên nửa mặt phẳng bờ AB chứa điểm C vẽ tia By vuông góc với BA, trên tia By lấy E sao cho BE = BA

a) CMR : DA = EC

b) DA vuông góc EC

 

Bài 3:

Cho tam giác ABC vuông tại B và AC = 2AB. Kẻ phân giác AE ( E thuộc BC ) của góc A

a) CM : EA = EC

b) Tính góc A và góc C của tam giác ABC

 

GIÚP TỚ VỚI Ạ. TỚ ĐANG CẦN!!

4
6 tháng 1 2018

Bài 1:

K D A H E B M C

a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A

=> đường trung tuyến AM đồng thời là đường cao

Vậy AM vuông góc BC

c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)

\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)

d) Ta có KB//AM(vì vuông góc với BM 

\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)

Xét tam giác KDB và MDA (2 góc đối đỉnh)

\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)

\(\Rightarrow KD=DM\left(1\right)\)

Tam giác ABM vuông tại M có trung tuyến MD 

Nên : MD=BD=AD(2)

Từ (1) và (2) ta có : KD=DM=DB=AD

Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)

Nên : Tam giác KAM vuông tại A

Tương tự : Tam giác MAH vuông tại A

Ta có: Qua1 điểm A thuộc AM  có 2 đường KA và AH cùng vuông góc với AM 

Nên : K,A,H thẳng thàng

6 tháng 1 2018

Bài 2 : 

x D A B C E y

a) Ta có tam giác DAB=tam giác CEB(c.g.c)

Do : DA=CB(gt)

       BE=BA(gt)

       \(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))

=> DA=EC

b) Do tam giác DAB=tam giác CEB(ở câu a) 

=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)

Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC) 

=> \(\widehat{BCE}+\widehat{BCD}=90^0\)

=> DA vuông góc với EC