K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{49-48}=14\)

b) \(=\frac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\frac{5\sqrt{6}}{5}+\frac{4\sqrt{3}-12\sqrt{2}}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}\)

9 tháng 12 2019

Câu hỏi của hoàng thị huyền trang - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo nhé!

8 tháng 2 2019

Từ giả thiết: \(\sqrt{a}+\sqrt{b}+\sqrt{c}=7\Leftrightarrow\sqrt{c}=7-\sqrt{a}-\sqrt{b}\)

Xét hạng tử: \(\frac{1}{\sqrt{ab}+\sqrt{c}-6}=\frac{1}{\sqrt{ab}+7-\sqrt{a}-\sqrt{b}-6}=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}\)

Từ đó: \(N=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}+\frac{1}{\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}+\frac{1}{\left(\sqrt{c}-1\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\sqrt{abc}-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-1}\)

\(=\frac{7-3}{3-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+7-1}=\frac{4}{9-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}\)

Mặt khác: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=13\)

Suy ra: \(N=\frac{4}{9-13}=-1\). Kết luận: N = -1.

25 tháng 9 2019

Từ giả thiết: \sqrt{a}+\sqrt{b}+\sqrt{c}=7\Leftrightarrow\sqrt{c}=7-\sqrt{a}-\sqrt{b}a​+b​+c​=7⇔c​=7−a​−b

Xét hạng tử: \frac{1}{\sqrt{ab}+\sqrt{c}-6}=\frac{1}{\sqrt{ab}+7-\sqrt{a}-\sqrt{b}-6}=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}ab​+c​−61​=ab​+7−a​−b​−61​=(a​−1)(b​−1)1​

Từ đó: N=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}+\frac{1}{\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}+\frac{1}{\left(\sqrt{c}-1\right)\left(\sqrt{a}-1\right)}N=(a​−1)(b​−1)1​+(b​−1)(c​−1)1​+(c​−1)(a​−1)1​

=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\sqrt{abc}-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-1}=(a​−1)(b​−1)(c​−1)a​+b​+c​−3​=abc​−(ab​+bc​+ca​)+(a​+b​+c​)−1a​+b​+c​−3​

=\frac{7-3}{3-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+7-1}=\frac{4}{9-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}=3−(ab​+bc​+ca​)+7−17−3​=9−(ab​+bc​+ca​)4​

Mặt khác: \sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=13ab​+bc​+ca​=2(a​+b​+c​)2−(a+b+c)​=13

Suy ra: N=\frac{4}{9-13}=-1N=9−134​=−1. Kết luận: N = -1.

23 tháng 8 2021

a, Xét tam giác ABC vuông tại A, đường cao AH

cotC = 7/11 => \(\frac{AB}{AC}=\frac{7}{11}\Rightarrow AB=\frac{7}{11}.AC=\frac{7}{11}.28=\frac{196}{11}\)cm 

Theo định lí Pytago cho tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\frac{196}{11}\right)^2+28^2}=33,188...\)cm 

b, tanC = 5/7 => \(\frac{AC}{AB}=\frac{5}{7}\Rightarrow AB=\frac{7}{5}AC=\frac{7}{5}.28=\frac{196}{5}\)cm 

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\frac{196}{5}\right)^2+28^2}=\frac{28\sqrt{74}}{5}\)cm 

c, cosC = 4/5 => \(\frac{AC}{BC}=\frac{4}{5}\Rightarrow BC=\frac{5}{4}AC=\frac{5}{4}.28=35\)cm 

Theo định lí Pytago tam giác ABC vuông tại A

\(AB=\sqrt{BC^2-AC^2}=21\)cm 

d, sinC = 3/5 => \(\frac{AB}{BC}=\frac{3}{5}\Rightarrow\frac{AB}{3}=\frac{BC}{5}\Rightarrow\frac{BC^2}{25}=\frac{AB^2}{9}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{BC^2}{25}=\frac{AB^2}{9}=\frac{BC^2-AB^2}{25-9}=\frac{AC^2}{16}=49\)

\(\Rightarrow BC=35cm;AB=21cm\)

18 tháng 8 2016

a, = \(\frac{\sqrt{7}-5}{2}-\frac{2\left(3-\sqrt{7}\right)}{4}+\frac{6\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\frac{5\left(4-\sqrt{7}\right)}{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}\)

18 tháng 8 2016

a, = \(=\frac{\sqrt{7}-5}{2}-\frac{3-\sqrt{7}}{2}+\frac{6\sqrt{7}+12}{7-4}-\frac{20-5\sqrt{7}}{16-7}=\frac{\sqrt{7}-5-3+\sqrt{7}}{2}+\frac{6\sqrt{7}+12}{3}-\frac{20-5\sqrt{7}}{9}\)