K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Bài 1 . Cho tam giác ABC vuông tại A. Trên cạnh AC lấy các điểm M, N (M nằm giữa A, N). So sánh các độ dài BM, BN, BC.Bài 2    Cho tam giác ABC, điểm M nằm giữa B và C. Gọi H và K là chân các đường vuông góc kẻ từ M đến các đường thẳng AB và AC. So sánh BC và tổng MH + MK.Bài 3    Cho tam giác ABC có BC = 1 cm, AC = 7 cm. Tìm độ dài cạnh AB, biết độ dài này là một số nguyên...
Đọc tiếp

 

Bài 1 . Cho tam giác ABC vuông tại A. Trên cạnh AC lấy các điểm M, N (M nằm giữa A, N). So sánh các độ dài BM, BN, BC.

Bài 2    Cho tam giác ABC, điểm M nằm giữa B và C. Gọi H và K là chân các đường vuông góc kẻ từ M đến các đường thẳng AB và AC. So sánh BC và tổng MH + MK.

Bài 3    Cho tam giác ABC có BC = 1 cm, AC = 7 cm. Tìm độ dài cạnh AB, biết độ dài này là một số nguyên (cm).

          Bài 4    tam giác ABC, điểm M thuộc cạnh AB.

a) So sánh MC với AM + AC.

b) Chứng minh MB + MC < AB + AC.

- Cộng cùng một số vào hai vế của bất đẳng thức:

a< b => a + c < b + c.

- Cộng từng vế hai bất đẳng thức cùng chiều:

 

          Bài 5      Cho tam giác ABC, điểm M bất kỳ nằm trong tam giác.

a) So sánh MB + MC với BC

b) Chứng minh MA + MB + MC >

Bài 6    Cho ABC có hai đường trung tuyến BD, CE

a) Tính các tỉ số

Bài 7    Cho tam giác ABC có hai đường trung tuyến BP, CQ cắt nhau tại G. Trên tia đối của tia PB lấy điểm E sao cho PE = PG. Trên tia đối của tia QG lấy điểm F sao cho QF = QG. Chứng minh:

 a) GB = GE, GC = GE;            b) EF = BC và EF//BC.

b) Chứng minh BD + CE > BC

Bài 8  Cho ABC. Trên tia đối của tia AB lấy điểm D sao cho

AD = AB. Lấy G thuộc cạnh AC sao cho AG =  AC. Tia DG cắt BC tại E. Qua E vẽ đường thẳng song song với BD, qua D vẽ đường thẳng song song với BC, hai đường thẳng này cắt nhau tại F. Gọi M là giao điểm của EF và CD.

Chứng minh:

a) G là trọng tâm BCD;

b) BED = FDE, từ đó suy ra EC = DF;

c) DMF = CME;

d) B, G, M thẳng hàng.

Bài 9. Cho ABC vuông tại A, AB = 6 cm, AC = 8 cm.

a) Tính BC.

b) Đường thẳng đi qua trung điểm I của BC và vuông góc với BC cắt AC tại D. Chứng minh .

c) Trên tia đối của tia DB lấy điểm E sao cho DE = DC. Chứng minh BCE vuông.

Bài 10  Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh:

a) Chứng minh AB //HK;

b) Chứng minh

c) Chứng minh AKI cân,

Bài 11 Cho có tia phân giác Ot. Trên tia Ot lấy điểm C bất kì. Lấy

A Ox, B Oy sao cho OA = OB. Gọi H là giao điểm của AB và Ot. Chứng minh:

a) CA =  CB và CO là phân giác của ;

b) OC vuông góc với AB tại trung điểm của AB;

c) Biết AB = 6 cm, OA = 5 cm. Tính OH

0
19 tháng 2 2021

A B C M

a) trong một tam giác thì tổng độ dài 2 cạnh bát kì luôn lớn hơn cạnh còn lại nên

tam giác AMC có AM + AC > CM

b) vì M thuộc cạnh AB nên AM + MB = AB

ta có: \(AB+AC=AM+MB+AC=\left(AM+AC\right)+MB\)

mà \(AM+AC>MC\)(cmt) \(\Rightarrow AB+AC=\left(AM+AC\right)+MB>MC+MB\)

vậy \(AB+AC>MC+MB\)

BVì M thuộc trong tam giác ABC nên tia BM thuộc trong B , nó cắt AC Tại D 

D nằm giữa A và C, M nằm giữa B và D 

Trong Tam giác BAD có

   BM + MD < BA + AD + DCTRong tam giác MDC có MC - MD < DC

Cộng 2 vế của 1 và 2 với nhau ta được : BM +MC

CÒn phần sau mình chưa làm xin lỗi bạn

21 tháng 4 2020

a) Xét Tam giác AMC. Áp dụng BĐT trong tam giác ta được: MC<AM+AC

b) Ta có: MC<AM+AC

Cộng cả 2 vế với MB: MB+MC<MB+AM+AC

mà MB+MC=AB

=> MB+MC<AB+AC
Học tốt

30 tháng 4 2020

BVì M thuộc trong tam giác ABC nên tia BM thuộc trong B , nó cắt AC Tại D 

D nằm giữa A và C, M nằm giữa B và D 

Trong Tam giác BAD có

   BM + MD < BA + AD + DC
TRong tam giác MDC có MC - MD < DC

Cộng 2 vế của 1 và 2 với nhau ta được : BM +MC

CÒn phần sau mình chưa làm xin lỗi bạn


 

10 tháng 5 2020

bố mày là thằng lớp 3a1 TRƯỜNG TIỂU HỌC HN ĐBP

30 tháng 3 2015

a)  M nằm trong tam giác nên ABM

=> A, M, I không thẳng hang

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

       BI + IA < AC + BC

Nên MA + MB < CA + CB

29 tháng 3 2017

M nằm trong tam giác nên ABM

=> A, M, I không thẳng hang

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

       BI + IA < AC + BC

Nên MA + MB < CA + CB

Vậy số đo cạnh thứ ba là 11cm

27 tháng 3 2016

bạn này tự hỏi rồi tự trả lời để người khác dung cho a

27 tháng 3 2016

a)  M nằm trong tam giác nên ABM

=> A, M, I không thẳng hàng

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hàng nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

BI + IA < AC + BC

Nên MA + MB < CA + CB

Vậy số đo cạnh thứ ba là 11cm

26 tháng 3 2018

a+b, Áp dụng bất đẳng thức tam giác, ta được: AM < IM + IA (trong tam giác MAI ) và IB < IC + CB ( trong tam giác BMA)

c, từ câu a và b => câu c được nhá (cái sau ý)