K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

Đặt AP=x suy ra BP=60-x.Ta có phương trình

xtg\(20^0\)=(60-x)tg\(30^0\)

Đ/s:AP ≈36,801cm;BP=23,119cm;CP=13,396cm

Tham khảo nha

Xét ΔANB vuông tại N có 

\(AN=AB\cdot\sin B\)

nên \(AN\simeq6,772\left(cm\right)\)

XétΔACN vuông tại N có 

\(AC=\dfrac{AN}{\sin C}=13,544\left(cm\right)\)

24 tháng 4 2017

a) Xét tam giác ABC vuông tại B có: AB=AC.sinC=8.sin5406,472(cm)AB=AC.sin⁡C=8.sin⁡540≈6,472(cm)

b) Vẽ CD. Xét tam giác ACH có: AH=AC.sinC=8.sin7407,690(cm)AH=AC.sin⁡C=8.sin⁡740≈7,690(cm)

Xét tam giác AHD vuông tại H có: sinD=AHAD7,6909,60,8010ˆD=530sin⁡D=AHAD≈7,6909,6≈0,8010⇒D^=530

Nhận xét: Để tính được số đo của góc D, ta đã vẽ AH ⊥ CD. Mục đích của việc vẽ đường phụ này là để tạo ra tam giác vuông biết độ dài hai cạnh và có góc D là một góc nhọn của nó. Từ đó tính được một tỉ số lượng giác của góc D rồi suy ra số đo của góc D.

21 tháng 12 2019

Thay CP = 13,394 vào (1) ta có:

AP = 13,394.cotg 20 °  ≈ 36,801 (cm)

Thay CP = 13,394 vào (2) ta có:

BP = 13,394.cotg 30 °  ≈ 27,526 (cm)

7 tháng 7 2017

a) 2,5 cm

b)6,5 cm

góc ACB=180-20-30=130 độ

Xét ΔABC có 

AB/sinC=AC/sinB=BC/sinA

=>BC/sin20=AC/sin30=60/sin130

=>\(BC\simeq26,79\left(cm\right);AC\simeq39,16\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot BC\cdot BA\cdot sinBCA\)

\(=\dfrac{1}{2}\cdot39.16\cdot26.79\cdot sin130=401.83\left(cm^2\right)\)

\(CP=2\cdot\dfrac{S_{ABC}}{AB}=\dfrac{2\cdot401.83}{60}\simeq13,39\left(cm\right)\)

Xét ΔCPA vuông tại P có 

tan A=CP/AP

=>13,39/AP=tan20

=>\(AP\simeq36.79\left(cm\right)\)

PB=AB-AP=60-36,79=23,21cm

20 tháng 10 2017

Tính góc A (= 130 độ ). tam giác ACP vuông tại P => AP = cot A .CP   (1)

                                    tam giác BCP vuông tại P => BP = cot B . CP     (2)

(1) +(2) => AP + BP =cot A .CP +cot B . CP

             <=> AB = CP( cot A + cot B)

              <=>60= CP ( cot 130 + cot 20 )

                => CP xấp xỉ 31.4

từ đó có thể dễ dàng tính ra AP và BP

29 tháng 6 2019

23 tháng 12 2017

a) Nối AC và kẻ DH⊥ACDH⊥AC

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

AC2=AB2+BC2=122+122=144+144=288AC2=AB2+BC2=122+122=144+144=288

Suy ra: AC=12√2(cm)AC=122(cm)

Ta có: tam giác ACD cân tại D

DH⊥ACDH⊥AC

Suy ra: HA=HC=AC2=6√2(cm)HA=HC=AC2=62(cm)

ˆADH=12ˆADC=20∘ADH^=12ADC^=20∘

Trong tam giác vuông ADH, ta có:

AD=AHsinˆADH=6√2sin20∘≈24,809(cm)AD=AHsin⁡ADH^=62sin⁡20∘≈24,809(cm)

b) Ta có:

SABC=12.AB.BC=12.12.12=72SABC=12.AB.BC=12.12.12=72 (cm2)

Trong tam giác vuông ADH, ta có:

DH=AH.cotgˆADH=6√2.cotg20∘≈23,313(cm)DH=AH.cot⁡gADH^=62.cot⁡g20∘≈23,313(cm)

Mặt khác:

SADC=12.DH.AC≈12.23,313.12√2=197,817SADC=12.DH.AC≈12.23,313.122=197,817 (cm2)

Vậy Sdiều =SABC+SADC=72+197,817=269,817=SABC+SADC=72+197,817=269,817 (cm2)



23 tháng 12 2017

a, nối AC rồi kẻ

Áp dụng định lý Pi-ta-go vào tam giác vuông ABC:

Suy ra:

ta có:tam giác ABC cân tại D

Suy ra:

Trong tam giác vuông ADH, ta có

b, Ta có:

(cm2)

Trong tam giác vuông ADH, ta có:

Mặt khác

(cm2)

Vậy S (cm2)

Tham khảo: