K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

a, xét tam giác AMC và tam giác NMB có : BM = MC do AM là trung tuyến

AM = MN (gt)

góc AMC = góc BMN (đối đỉnh)

=> tam giác AMC = tam giác NMB (c-g-c)

=> BN = AC (đn)

a,Áp dụng tính chất tổng ba góc trong 1 tam giác vào  \(\Delta ABC\),có:

           \(180^o=\widehat{A}+\widehat{B}+\widehat{C}\)

\(\Rightarrow\widehat{C}=180^o-(\widehat{A}+\widehat{B})\)

            \(=180^o-140^o\)

              \(=40^o\)

Vậy \(\widehat{C}=40^o\)

b,Vì \(\widehat{A}>\widehat{B}=\widehat{C}\left(100^o>40^o=40^o\right)\)

\(\Rightarrow BC>AC=AB\)(Quan hệ giữa góc và cạnh đối diện )

Vậy BC là cạnh lớn nhất của tam giác ABC

c, Vì G là trọng tâm của tam giác ABC 

\(\Rightarrow AG=\frac{2}{3}AM\)

\(\Rightarrow AM=AG:\frac{2}{3}\)

\(\Rightarrow AM=8.\frac{3}{2}\)

\(\Rightarrow AM=12\left(cm\right)\)

Vậy AM=12 cm

k mik nha !

sorry mik vẽ hình ko đc chuẩn lắm thông cảm nha

30 tháng 4 2016

A B C M G

a. áp dụng dl Pytago ta có

BC^2= AB^2+AC^2

BC^2= 8^2+15^2=64+225=289(cm)

=> BC= căn 289=17cm

b. vì trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền nên

AM= 1/2BC= BC/2=8.5cm

AG= 2/3 AM = 2/3 . 8.5 xấp xỉ 5.7

29 tháng 1 2020

ABCMabNI

a)Xét \(\Delta\)AMB và \(\Delta\)AMC

AB=AC(GT)

MB=MC(GT)

AM là cạnh chung

=>\(\Delta\)AMB=\(\Delta\)AMC

b)Ta có:\(\Delta\)AMB=\(\Delta\)AMC=>góc AMC=góc AMB=\(^{90^0}\)

=>AM\(\perp\)BC

Ta lại có:góc aAM=\(90^0\);góc AMB=\(90^0\)mà hai góc này nằm ở vị trí so le trong

=>a//BC

c)Xét \(\Delta\)AMC và \(\Delta\)CNA

AC là cạnh chung

a//BC=>góc MCA=góc NAC(hai góc so le trong)

b//AM=>góc MAC=góc ACN(hai góc so le trong)

=>​​​\(\Delta\)​AMC=​\(\Delta\)​CNA

d)Xét​\(\Delta\)​INC và\(\Delta\)IMA

góc NIC=góc AIM(đối đỉnh)

IC=IA(GT)

góc ACN=góc MAC(câu c)

=>\(\Delta\)INC=​\(\Delta\)​IMA

=>IN=IM

=>I là trung điểm của MN

Hk tốt ^-^

21 tháng 3 2020

a và b) Xét ΔAMBΔAMB và ΔAMCΔAMC có:

AMAM: chung

MB=MC(gt)MB=MC(gt)

AB=AC(gt)AB=AC(gt)

Vậy ΔAMB=ΔAMC(c.c.c)ΔAMB=ΔAMC(c.c.c)

⇒AMBˆ=AMCˆ⇒AMB^=AMC^

Mà AMBˆ+AMCˆ=180oAMB^+AMC^=180o

Nên AMBˆ=AMCˆ=AMB^=AMC^=180o2=90o180o2=90o

⇒AM⊥BC⇒AM⊥BC

Ta có a//BCa//BC vì cùng vuông góc với AMAM

c) Xét tứ giác ANCMANCM có:

Aˆ=Mˆ=90oCˆ=AMCˆ=90o(b//AM)A^=M^=90oC^=AMC^=90o(b//AM)

Nên ANCMANCM là hình chữ nhật ⇒{AM=NCAN=MC⇒{AM=NCAN=MC

Xét ΔAMCΔAMC và ΔCNAΔCNA có: ⎧⎩⎨⎪⎪AM=NCAMCˆ=ANCˆ=90oAN=MC{AM=NCAMC^=ANC^=90oAN=MC

Nên ΔAMCΔAMC==ΔCNAΔCNA(c.g.c)(c.g.c)

d) II là trung điểm ACAC ⇒I⇒I là giao 2 đường chéo của hình chữ nhật

⇒I⇒I là trung điểm MN