Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAFH và ΔADB có
\(\widehat{AFH}=\widehat{ADB}\left(=90^0\right)\)
\(\widehat{BAD}\) chung
Do đó: ΔAFH∼ΔADB(g-g)
b) Xét ΔBHF và ΔCHE có
\(\widehat{BFH}=\widehat{CEH}\left(=90^0\right)\)
\(\widehat{BHF}=\widehat{CHE}\)(đối đỉnh)
Do đó: ΔBHF∼ΔCHE(g-g)
\(\Rightarrow\frac{BH}{CH}=\frac{HF}{HE}=k\)(tỉ số đồng dạng)
hay \(BH\cdot HE=CH\cdot HF\)(đpcm)
a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :
Góc AHC = góc BAC = 90o; góc C chung
=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)
b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144
=> \(AB=\sqrt{144}=12\left(cm\right)\)
Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')
=> Góc BIH = góc ADB
Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB
=> Tam giác AID cân tại A
d) ('Mình ko biết')
a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :
Góc AHC = góc BAC = 90o; góc C chung
=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)
b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144
=> \(AB=\sqrt{144}=12\left(cm\right)\)
Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')
=> Góc BIH = góc ADB
Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB
=> Tam giác AID cân tại A
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: ADHE là hình chữ nhật
=>HD//AE và HD=AE
Ta có: HD//AE
D\(\in\)HF
Do đó: DF//AE
Ta có; HD=AE
HD=DF
Do đó: AE=DF
Xét tứ giác AEDF có
AE//DF
AE=DF
Do đó: AEDF là hình bình hành
c: Ta có: AEDF là hình bình hành
=>AF//DE
mà A\(\in\)KF
nên KA//ED
Ta có: EH//AD
E\(\in\)KH
Do đó: KE//AD
Xét tứ giác ADEK có
AD//EK
AK//DE
Do đó: ADEK là hình bình hành
=>AK=DE
mà DE=AF(AEDF là hình bình hành)
nên AF=AK
mà K,A,F thẳng hàng
nên A là trung điểm của KF
d: Xét tứ giác DHME có
DH//ME
DE//MH
Do đó: DHME là hình bình hành
=>DH=EM
mà DH=EA
nên EM=EA
=>E là trung điểm của AM
Xét tứ giác AHMK có
E là trung điểm chung của AM và HK
=>AHMK là hình bình hành
Hình bình hành AHMK có AM\(\perp\)HK
nên AHMK là hình thoi
a: Xét ΔAHE có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAE(1)
Xét ΔAHD có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAHD cân tại A
mà AB là đường cao
nên AB là tia phân giác của góc HAD(2)
Từ (1) và (2) suy ra \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}=2\cdot\left(\widehat{CAH}+\widehat{BAH}\right)=180^0\)
hay E,A,D thẳng hàng
b: Xét ΔHED có
M là trung điểm của HE
N là trung điểm của HD
Do đó: MN là đường trung bình
=>MN//DE
c: Xét ΔAHB và ΔADB có
AH=AD
\(\widehat{HAB}=\widehat{DAB}\)
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: \(\widehat{AHB}=\widehat{ADB}=90^0\)
hay BD\(\perp\)ED(3)
Xét ΔAHC và ΔAEC có
AH=AE
\(\widehat{HAC}=\widehat{EAC}\)
AC chung
Do đó: ΔAHC=ΔAEC
Suy ra: \(\widehat{AHC}=\widehat{AEC}=90^0\)
hay CE\(\perp\)DE(4)
Từ (3) và (4) suy ra BD//CE
giúp e vs các a cj soyeon_Tiểubàng giải
Phương An
Hoàng Lê Bảo Ngọc
Silver bullet
Nguyễn Trần Thành Đạt
Nguyễn Huy Tú
Nguyễn Huy Thắng
Võ Đông Anh Tuấn