K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ha=9; hb=12; hc=16

=>hc*9=ha*16=hb*12

=>hc/16=ha/9=hb/12

=>Haitam giác này đồng dạng 

b: ha=4; hb=5; hc=6

=>ha*6=24; hb*5=25; ha*4=24

=>Hai tam giác này ko đồng dạng

15 tháng 4 2020

Bài 2 : 

vì BE vuông góc BD nên BE là đường phân giác ngoài của tam giác ABC.
theo tính chất đường phân giác (ngoài) ta có :

AEEB=ECBCAEEB=ECBC

⇒⇒ CE=AB.BCABCE=AB.BCAB

⇒⇒ CE=AE.23CE=AE.23

⇒⇒ 3CE=(CE+AC).23CE=(CE+AC).2

⇒⇒ 3CE=2CE+2AC3CE=2CE+2AC

⇒⇒ CE=2AC=6(cm) 

Bài 1: Giải

Nếu cạnh lớn nhất của tam giác đã cho là cạnh bé nhất của tam giác đồng dạng với nó thì ta có tỉ số đồng dạng đã cho là: (Gọi tạm tam giác có cạnh 12,16,18 m là tgiac 1, tgiac mới là tgiac 2)

k=Δ1Δ2=1218=23k=Δ1Δ2=1218=23

Chu vi của tam giác 1 là:

12+16+18=46(m)12+16+18=46(m)

⇒⇒ Chu vi của tam giác 2 là: 46:23=69(m)46:23=69(m)

Cạnh thứ hai của tam giác đồng dạng (2) là:

16:23=24(m)16:23=24(m)

Cạnh lớn nhất của tam giác đồng dạng (2) đó là:

69−24−18=27(m

Bài 3 tớ k bt lm 

15 tháng 4 2020

copy mạng nhớ ghi nguồn nhé bạn =))))

học tốt bro :))

~~

Gọi AH,BK,CE lần lượt là các đường cao của ΔABC

Lấy DF,DG,FG lần lượt bằng AH,BK,CE

=>AH:BK:CE=BC:AC:AB(Định lí)

=>AH/BC=BK/AC=CE/AB

=>DF/BC=DG/AC=FG/AB

=>ΔDFG đồng dạng với ΔBCA

23 tháng 4 2023

a. Xét ΔABC và ΔHBA :

      \(\widehat{A}\) = \(\widehat{H}\) = 900 (gt)

       \(\widehat{B}\) chung

\(\Rightarrow\) ΔABC \(\sim\) ΔHBA (g.g)

b. Xét ΔABC vuông tại A

Theo định lý Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 62 + 82

\(\Rightarrow\) BC2 = 100

\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm

Ta có: ΔABC \(\sim\) ΔHBA 

  \(\dfrac{AH}{CA}\) = \(\dfrac{BC}{BA}\) 

\(\Rightarrow\) \(\dfrac{AH}{8}\) = \(\dfrac{10}{6}\) 

\(\Rightarrow\) AH = 13,3 cm

\(\dfrac{BH}{BA}\) = \(\dfrac{BC}{BA}\) 

\(\Rightarrow\) \(\dfrac{BH}{6}\) = \(\dfrac{10}{6}\) 

\(\Rightarrow\) BH = 10 cm

c. Xét  ΔAIH và ΔBAC :

  \(\widehat{AIH}\) = \(\widehat{BAC}\) = 900

Ta có: \(\widehat{IAH}\) = \(\widehat{ACB}\)  (phụ thuộc \(\widehat{HAC}\) )

\(\Rightarrow\) ΔAIH \(\sim\) ΔBAC (g.g)

 \(\Rightarrow\) \(\dfrac{AI}{IH}\) = \(\dfrac{AC}{AB}\) 

 \(\Rightarrow\)\(\dfrac{AI}{AK}\) = \(\dfrac{AC}{AB}\) (vì AKIH là HCN)

\(\Rightarrow\) AI . AB = AK. AC(đpcm)

23 tháng 4 2023

a) Xét ΔABC và ΔHBA ta có:

\(\widehat{B}\) chung

\(\widehat{BAC}=\widehat{BHA}=90^0\)

ΔABC ΔHBA

b) Xét ΔABC vuông tại A, áp dụng định lí pytago ta có:

\(BC^2=AB^2+AC^2\)

         \(=6^2+8^2\)

         \(=100\)

\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)

Vì ΔABC ∼ ΔBHA(cmt)

\(\Rightarrow\dfrac{AB}{BH}=\dfrac{AC}{AH}=\dfrac{BC}{AB}hay\dfrac{6}{BH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\)

Suy ra: \(AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)

              \(BH=\dfrac{6.3}{5}=3,6\left(cm\right)\)