Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/3ma +2/3mb >c ( Bất đẳng thức tam giác)
2/3ma+ 2/3c> b
2/3mb +2/3mc > a
=> 4/3 ( ma +mb + mc) > a+b+c
a,ta có gMAB+gBAC=gMAC
gNAC+gCAB=gNAB
mà gMAB=gNAC=90độ
=>gMAC=gNAB
xét tgMAC và tgNAB có: AM=AB (tgMAB cân tại A)
gMAC=gNAB (cmt)
AN=AC (tgNAC cân tại A)
=> tgMAC = tgNAB (c.g.c)
=>MC=BN (hai cạn tương ứng)
b,gọi AB cắt MC tại H ; gọi MC cắt BN tại I
xét tgAMH vuông tại A => gAMH + gAHM = 90 độ
mà gAHM = gIHB (hai góc đối đỉnh);gAMH = gIBH (vì tgMAC = tgNAB)
=> gIHB+gIBH = 90 độ => gHIB = 90 độ
=>MC vuông góc với BN tại I
c, vì tgABC đều cạnh 4 cm => AB=AC=BC=4 cm
=> AM=AN=4cm
Xét tgAMB vuông tại A,áp dung định lý pytago
=>MB=4 căn 2
tương tự NC=4 căn 2
-Áp dụng BĐT trong tam giác ta có:
\(AG+BG>AB;BG+CG>BC;CG+AG>CA\)
-Cộng các vế với nhau ta được:
\(2\left(AG+BG+CG\right)>AB+AC+BC\)
\(\Rightarrow2.\dfrac{2}{3}\left(AE+BF+CD\right)>AB+AC+BC\)
\(\Rightarrow AE+BF+CD>\dfrac{3}{4}AB+AC+BC\)