Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi cạnh thứ 1,2,3 lần lượt là a,b,c
Ta có:\(\frac{a}{1}=\frac{b}{2},3b=4c\) và a+b+c=36
\(\Rightarrow\frac{a}{1}=\frac{b}{2},\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{2}=\frac{b}{4},\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{2}=\frac{b}{4}=\frac{c}{3}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{4}=\frac{c}{3}=\frac{a+b+c}{2+4+3}=\frac{36}{9}=4\)(T/C...)
\(\Rightarrow a=4\cdot2=8,b=4\cdot4=16,c=4\cdot3=12\)
Vậy độ dài cạnh thứ 1,2,3 lần lượt là:8m,16m,12m
a: Gọi độ dài ba cạnh lần lượt là a,b,c
Theo đề, ta có: a/4=b/5=c/7 và a+b+c-2a=2
Áp dụng tính chất của DTBSN, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c-2a}{4+5+7-2\cdot4}=\dfrac{2}{8}=\dfrac{1}{4}\)
=>a=1; b=5/4; c=7/4
b: Gọi độ dài ba cạnh lần lượt là a,b,c
Theo đề, ta có:
a/2=b/4=c/5
Áp dụng tính chất của DTSBN, ta đc:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{2+4+5}=\dfrac{33}{11}=3\)
=>a=6; b=12; c=15
Giải:
Gọi 3 cạnh của tam giác ABC lần lượt là a, b, c ( a > b > c > 0 )
Ta có: \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\) và a - c = 10
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a-c}{5-3}=\frac{10}{2}=5\)
+) \(\frac{a}{5}=5\Rightarrow a=25\)
+) \(\frac{b}{4}=5\Rightarrow b=20\)
+) \(\frac{c}{3}=5\Rightarrow c=15\)
Vậy 3 cạnh của tam giác lần lượt là 15 cm, 20 cm và 25 cm
Gọi độ dài các cạnh của tam giác lần lượt là a , b , c (theo thứ tự nhỏ đến lớn)
Theo đề bài , ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và c + 10 = a + b
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{c+10}{7}\)
=> \(\frac{c+10}{7}=\frac{c}{5}\)
=> 5(c + 10) = 7c
=> 5c + 50 = 7c
=> 50 = 2c
=> c = 25
=> a + b = 25 + 10 = 35
Áp dụng tính chất dãy tỉ số , ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{35}{7}=5\)
=> a = 3.5 = 15
b = 4.5 = 20
Gọi độ dài ba cạnh của △ABC lần lượt là a ; b ; c \(\left(a;b;c\ne0\right)\)
Độ dài cạnh thứ nhất và cạnh thứ hai tỉ lệ thuận với 1 và 2\(\Rightarrow a=\frac{1}{2}\Leftrightarrow\frac{a}{3}=\frac{b}{6}\left(1\right)\)
Độ dài cạnh thứ 2 và cạnh thứ 3 tỉ lệ nghịch với 3 và 4 \(\Rightarrow\frac{b}{2}=\frac{c}{3}\Rightarrow\frac{b}{6}=\frac{c}{9}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{a}{3}=\frac{b}{6}=\frac{c}{9}\)
Mà tổng ba cạnh của △ABC =36cm\(\Rightarrow a+b+c=36\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{3}=\frac{b}{6}=\frac{c}{9}=\frac{a+b+c}{3+6+9}=\frac{36}{18}=2\)
\(\Rightarrow a=2.3=6\) ; \(b=2.6=12\) ; \(c=2.9=18\)
Vậy độ dài ba cạnh của tam giác lần lượt là 6 ; 12 và 18 cm
x là cạnh tam giác đều, y là chu vi tam giác đều
\(\Rightarrow y=3x\)
Vậy y tỉ lệ thuận với x
Chu vi của tam giác đều là y = x+x+x=3x.
Với công thức y=3x chứng tỏ rằng đại lượng y tỉ lệ thuận với đại lượng x.
Chu vi của tam giác đều có độ dài cạnh x là: y = x + x + x = 3x
⇒ y tỉ lệ thuận với x theo hệ số tỉ lệ là 3
Vì gt của đại lượng y phụ thuộc vào sự tăng giảm của x => y tỉ lệ thuận với x