K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

Chọn C.

Theo định lí hàm cosin, ta có : 

Do MC = 2MB nên BM = 1/3.BC = 2.

Theo định lí hàm cosin, ta có: AM2 = AB2 + BM2 - 2AB.BM.cos B = 42 + 22 -2.4.2.1/2 = 12

Do đó: .

17 tháng 12 2017

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng

NV
12 tháng 12 2021

Áp dụng địnhlý hàm cos:

\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosBAC}=\sqrt{19}\)

\(\Rightarrow cosB=\dfrac{AB^2+BC^2-AC^2}{2AB.BC}=\dfrac{\sqrt{19}}{38}\)

\(BM=2MC\Rightarrow BM=\dfrac{2}{3}BC=\dfrac{2\sqrt{19}}{3}\)

\(\Rightarrow AM=\sqrt{AB^2+BM^2-2AB.BM.cosB}=\dfrac{\sqrt{139}}{3}\)

NV
22 tháng 8 2020

\(\overrightarrow{MB}=-2\overrightarrow{MC}\Leftrightarrow\overrightarrow{MB}=-2\left(\overrightarrow{MB}+\overrightarrow{BC}\right)\)

\(\Rightarrow3\overrightarrow{MB}=-2\overrightarrow{BC}\Rightarrow\overrightarrow{BM}=\frac{2}{3}\overrightarrow{BC}=\frac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=-\frac{2}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\)

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}=\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\)

\(\Rightarrow\left\{{}\begin{matrix}m=\frac{1}{3}\\n=\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow mn=\frac{2}{9}\)

AH
Akai Haruma
Giáo viên
3 tháng 11 2019

Lời giải:

Lấy điểm $N$ trên $AB$ sao cho $MN\parallel AC$

Ta có:

\(\overrightarrow{AM}=\overrightarrow{AN}+\overrightarrow{NM}=\frac{AN}{AB}.\overrightarrow{AB}+\frac{NM}{AC}.\overrightarrow{AC}\)

Mà:
\(\frac{AN}{AB}=\frac{MC}{BC}; \frac{NM}{AC}=\frac{MB}{BC}\) theo định lý Ta-let với $MN\parallel AC$

\(\Rightarrow \overrightarrow{AM}=\frac{MC}{BC}\overrightarrow{AB}+\frac{MB}{BC}\overrightarrow{AC}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
3 tháng 11 2019

Hình vẽ:

Bài 3. TÍCH  CỦA VECTO VỚI MỘT SỐ

27 tháng 8 2023

Để tính độ dài AM, ta có thể sử dụng định lý Pythagoras. Định lý này cho biết rằng trong một tam giác vuông, bình phương của độ dài cạnh huyền (đường chéo dài nhất) bằng tổng bình phương của độ dài hai cạnh góc vuông.

Trong trường hợp này, ta có AB = AC = a và BM = BC/√3. Để tìm độ dài AM, ta cần tìm độ dài cạnh còn lại của tam giác ABC.

Áp dụng định lý Pythagoras, ta có: AM^2 + BM^2 = AB^2

Thay các giá trị đã biết vào, ta có: AM^2 + (BC/√3)^2 = a^2

Giải phương trình trên, ta có thể tính được độ dài AM.

16 tháng 12 2023

Chị ơi giúp e cái này tìm 3  giá trị của x sao cho 0,6<x<0,61

17 tháng 12 2023

Gọi I là tâm đường tròn nội tiếp tam giác ABC

\(\Rightarrow a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=0\)

Ta có:

\(A=\left|a\overrightarrow{MA}+b\overrightarrow{MB}+c\overrightarrow{MC}\right|=\left|\left(a+b+c\right)\overrightarrow{MI}+a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}\right|\)

   \(=\left|\left(a+b+c\right)\overrightarrow{MI}\right|=\left(a+b+c\right).MI\)

\(Amin\Leftrightarrow MImin\)

           \(\Leftrightarrow\) M trùng I