Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) +) tam giác ABC vuông tại A vì BC^2 = AB^2 + AC^2 \
+) AH.BC = AB.AC <=> AH = \(\frac{AB.AC}{BC}\) = ....
+) chu vi , diện tích tính đơn giản tự làm :))
b) tứ giác ADHE là hình chữ nhật vì góc A = góc D = góc E =90 độ => DE= AH ( 2 đường chéo )
c) vì ADHE là hcn -> đmcm
a: Xét ΔABD và ΔKBD có
BA=BK
góc ABD=góc KBD
BD chung
Do đó: ΔABD=ΔKBD
Suy ra: DA=DK
b: Ta có: ΔBAD=ΔBKD
nên góc BKD=góc BAD=90 độ
=>DK vuông góc với BC
=>DK//AH
a) Xét tam giác vuông AHB và tam giác vuông AHC có:
Cạnh AH chung
HB = HC
\(\Rightarrow\Delta AHB=\Delta AHC\) (Hai cạnh góc vuông)
b) Do HK // AB nên \(\widehat{AHK}=\widehat{BAH}\) (Hai góc so le trong)
Lại có \(\widehat{BAH}=\widehat{CAH}\)
\(\Rightarrow\widehat{KAH}=\widehat{KHA}\)
Vậy thì \(\widehat{KHC}=\widehat{KCH}\) (Cùng phụ với hai góc trên)
\(\Rightarrow\) tam giác KHC cân tại K.
c) Ta có KA = KH = KC nên K là trung điểm AC.
Vậy thì BK là trung tuyến của tam giác ABC. AH cũng là trung tuyến nên suy ra G là trọng tâm tam giác ABC.
Suy ra AG = 2/3AH = 2.6:3 = 4 (cm)
Ta có hay HK = AC/2 = AB/2 = 10:2 = 5 (cm)
d) Ta có \(2\left(AH+BK\right)=2\left(3HG+3GK\right)=6\left(HG+GK\right)\)
Xét tam giác GHK, theo bất đẳng thức tam giác ta có: HG + GK > HK
Vậy nên \(6\left(HG+GK\right)>6.HK=3.2HK=3AC\)
Tóm lại: \(2\left(AH+BK\right)>3AC\)
Bài giải :
a) Xét tam giác vuông AHB và tam giác vuông AHC có:
Cạnh AH chung
HB = HC
⇒ΔAHB=ΔAHC (Hai cạnh góc vuông)
b) Do HK // AB nên ^AHK=^BAH (Hai góc so le trong)
Lại có ^BAH=^CAH
⇒^KAH=^KHA
Vậy thì ^KHC=^KCH (Cùng phụ với hai góc trên)
⇒ tam giác KHC cân tại K.
c) Ta có KA = KH = KC nên K là trung điểm AC.
Vậy thì BK là trung tuyến của tam giác ABC. AH cũng là trung tuyến nên suy ra G là trọng tâm tam giác ABC.
Suy ra AG = 2/3AH = 2.6:3 = 4 (cm)
Ta có hay HK = AC/2 = AB/2 = 10:2 = 5 (cm)
d) Ta có 2(AH+BK)=2(3HG+3GK)=6(HG+GK)
Xét tam giác GHK, theo bất đẳng thức tam giác ta có: HG + GK > HK
Vậy nên 6(HG+GK)>6.HK=3.2HK=3AC
Tóm lại: 2(AH+BK)>3AC
A B C D H
a, Áp dụng định l;ý Py-ta-go vào \(\Delta ABC\) vuông tại A ,có :
BC2 =AB2 + AC2
BC2 = 62 + 82
BC2 = 100
=> BC = 10 (cm)
Chu vi \(\Delta ABC\) là : AB + AC + BC = 6 + 8+ 10 = 24 (cm )
b) Xét \(\Delta BAD\) và \(\Delta HAD\) ,có :
\(\widehat{ABD}=\widehat{HBD}\) ( BD là tia p/h của góc B )
BD : cạnh chung
\(\widehat{BAD}=\widehat{BHD}=90^0\)
=> \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)
c) Xét \(\Delta DHC\) vuông tại H :
DC là cạnh huyền => DC > DH
Mà DH = DA => DA < DC
A B C H D
a, áp dụng định lí py ta go vào \(\Delta ABC\) vuông tại A
BC2 = AB2 + AC2
BC2 = 62 + 82
=> BC = 10 cm
chu vi \(\Delta ABC\) là 6 + 8 + 10 = 24 cm
b, xét \(\Delta ABDvà\Delta HDB\) có
BD chung
\(\widehat{ABD}=\widehat{HBD}\) ( BD là tia pg )
\(\widehat{A}=\widehat{H}=90^0\)
=> \(\Delta ABD=\Delta HBD\) ( ch - gn )
c, \(\Delta DHC\) vuông tại H
=> DC > DH
lại có DA = DH ( câu a )
=> DC > DA
Bai 1:
Ap dung dinh li Py-ta-go vao tam giac AHB ta co:
AH^2+BH^2=AB^2
=>12^2+BH^2=13^2
=>HB=13^2-12^2=25
Tuong tu voi tam giac AHC
=>AC=20
=>BC=25+16=41
a: \(\widehat{C}=90^0-30^0=60^0\)
c: Xét ΔCAD và ΔCMD có
CA=CM
\(\widehat{ACD}=\widehat{MCD}\)
CD chung
Do đó: ΔCAD=ΔCMD
a,b) A B C M D x y K 60* 30*
c) Vì CD là tia phân giác của \(\widehat{C}\) nên \(\widehat{ACD}=\widehat{MCD}=\frac{60}{2}=30\)*
Xét ΔACD và ΔMCD, ta có:
CA=CM (gt)
\(\widehat{ACD}=\widehat{MCD}=30\)* (cmt)
Chung cạnh CD
Do đó: ΔACD = ΔMCD (c.g.c)
d) Mk sửa lại đề là cắt xy tại K bạn nhé !!!
Vì AK || DC nên \(\widehat{ACD}=\widehat{CAK}=30\)* (So le trong)
Xét ΔDAC va ΔKCA, ta có:
\(\widehat{ACD}=\widehat{CAK}=30\)* (cmt)
Chung cạnh AC
\(\widehat{DAC}=\widehat{KCA}=90\)*
Do đó: ΔDAC = ΔKCA (g.c.g)
=> AK=CD (2 cạnh tương ứng).
e) Trong ΔAKC có: \(\widehat{CAK}+\widehat{AKC}+\widehat{KCA}=180\)*
\(\Rightarrow\widehat{AKC}=180-\left(\widehat{CAK}+\widehat{KCA}\right)\)
\(\Rightarrow\widehat{AKC}=180-\left(30+90\right)\)
\(\Rightarrow\widehat{AKC}=60\)*
e làm đc bài này chưa ? ,,,, cần trả lời nữa ko ?
e cần ạ