K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 4 2021

\(AC=AB=6\)

Áp dụng định lý phân giác:

\(\dfrac{AD}{AB}=\dfrac{DC}{BC}\Leftrightarrow\dfrac{AD}{6}=\dfrac{6-AD}{10}\)

\(\Leftrightarrow10AD=36-6AD\Rightarrow AD=\dfrac{9}{4}\) (cm)

\(\Rightarrow DC=AC-AD=\dfrac{15}{4}\) (cm)

29 tháng 7 2016

a) Vì BD là tia pg giác của \(\widehat{ABC}\) (gt)

=>\(\frac{AB}{BC}=\frac{AD}{DC}\)

=>\(\frac{AB}{AB+AC}=\frac{AD}{AD+DC}\)

=> \(\frac{AB}{AB+BC}=\frac{AD}{AC}\)

=>\(\frac{20}{20+5}=\frac{AD}{20}\)

=>\(AD=\frac{20\cdot20}{20+5}=16\) cm

Có: AC=AD+DC 

=>DC=AC-AD=20-16=4 cm

 

29 tháng 7 2016

Câu B thì sao hả bn ?

 

27 tháng 3 2021

a/ \(BD\) là đường phân giác \(\widehat{BAC}\)

\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)

\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)

\(\to\begin{cases}DA=3\\DC=5\end{cases}\)

b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)

\(\to AB.AC=AH.BC\)

\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

9 tháng 7 2020

1)

A B H D c m n

Kẻ AH là đường cao của ABC

Ta có :\(S_{ABCD}=\frac{1}{2}.AH.BD ; S_{ADC}=\frac{1}{2}.AH.CD\)

\(\Rightarrow\frac{S_{ABC}}{S_{ADC}}=\frac{\frac{1}{2}.AH.BD}{\frac{1}{2}.AH.CD}=\frac{BD}{CD}\left(1\right)\)

\(\Delta ABC\)có AD là tia phân giác

\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\left(2\right)\)

Từ (1)(2) 

\(\Rightarrow\frac{S_{ABCD}}{S_{ACD}}=\frac{AB}{AC}=\frac{m}{n}\)

Vậy tỉ số của tam giác ABD và ACD là \(\frac{m}{n}\)

a: Xét ΔBAC có BD là phân giác

nên AD/AB=DC/BC

=>AD/4=DC/1=(AD+DC)/(4+1)=40/5=8

=>AD=32cm; DC=8cm

b: Kẻ đường cao AH

=>H là trung điểm của BC

=>HB=HC=5cm

Xét ΔAHC vuông tại H có sin C=AH/AC=5/40=1/8

nên góc C=7 độ

\(BD=\dfrac{2\cdot40\cdot10}{40+10}\cdot\dfrac{cos\widehat{B}}{2}\simeq15,97\left(cm\right)\)

a: Xét ΔBAC có BD là phân giác

nên AD/AB=DC/BC

=>AD/4=DC/1=(AD+DC)/(4+1)=40/5=8

=>AD=32cm; DC=8cm

b: Kẻ đường cao AH

=>H là trung điểm của BC

=>HB=HC=5cm

Xét ΔAHC vuông tại H có sin C=AH/AC=5/40=1/8

nên góc C=7 độ

\(BD=\dfrac{2\cdot40\cdot10}{40+10}\cdot\dfrac{cos\widehat{B}}{2}\simeq15,97\left(cm\right)\)

6 tháng 2 2023

em chưa học cos ạ có cách nào khác không ạ

28 tháng 11 2023

a: Xét ΔCBA có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{30}=\dfrac{CD}{40}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=50

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{50}{7}\)

=>\(BD=\dfrac{150}{7}\left(cm\right);CD=\dfrac{200}{7}\left(cm\right)\)

Xét ΔABC có DE//AB

nên \(\dfrac{DE}{AB}=\dfrac{CD}{CB}\)

=>\(\dfrac{DE}{30}=\dfrac{200}{7}:50=\dfrac{4}{7}\)

=>\(DE=\dfrac{120}{7}\left(cm\right)\)

b: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

=>Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot30\cdot40=15\cdot40=600\left(cm^2\right)\)

28 tháng 11 2023

bạn tính cho mik diện tích tam giác adb,ade và dce vs