K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2022

vì m ngu

15 tháng 5 2022

vì 1 chiếc dép đi cùng với 1 chiếc dép là có 2 chiếc dép chứ 0 pk 3 >:))

25 tháng 3 2017

ko có chuyện chia mà được thương và số dư bằng nhau đâu bạn ạ

6 tháng 4 2017

11 tháng 9 2017

viết dạng tổng quát của 1 số tự nhiên :

a, có 2 chữ số là: ab

(a \(\in\) N*/ 0 < a < 10) và (b \(\in\) N/ b < 10)

b, có 3 chữ số là: abc

(a \(\in\) N*/ 0 < a < 10) và (b \(\in\) N/ b < 10) và (b \(\in\) N/ b < 10).

11 tháng 9 2017

Trong phần b, mink sửa:

.........và (c \(\in\) N/ c <10)

12 tháng 2 2017

Bài này có mẹo á ; giải ra dễ lắm !!!

\(\left(100-1^2\right)\left(100-2^2\right)....\left(100-10^2\right)......\left(100-20^2\right)\\ =\left(100-1\right).\left(100-4\right)....0....\left(100-400\right)=0\\ \)

Chúc bạn học tốt !!!

14 tháng 5 2017

Từ đề bài ta có:

\(T=\dfrac{1+2}{2}.\dfrac{1+3}{3}.\dfrac{1+4}{4}...\dfrac{1+98}{98}.\dfrac{1+99}{99}\)

\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)

\(=\dfrac{100}{2}\)

\(=50\).

15 tháng 5 2017

\(T=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)
\(T=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}....\dfrac{99}{98}.\dfrac{100}{99}\)
\(T=\dfrac{3.4.5......99}{3.4.5......99}.\dfrac{100}{2}\)
\(T=50\)

30 tháng 6 2017

Gọi thứ tự các ô trong dãy lần lượt là :

01;02;03;04;05;06;07 thì ta có:

01=04=07; 02=05 =176 ; 03=06=324;

Mà 01+02+03=1000 hay 01+176+324=1000

=>01+500=1000 => 01 = 500;

Số thích hợp để điền vào ô thứ nhất là 500...

30 tháng 6 2017
500 176 324 500 176 324 500

a: \(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}=4\)

=>x=12; y2=1; z3=-8

=>x=12; \(y\in\left\{1;-1\right\}\); z=-2

b: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{z}{-17}=\dfrac{t}{9}\)

=>x/5=y/-3=z/-17=t/9=-2

=>x=-10; y=6; z=34; t=-18

17 tháng 9 2017

\(\overline{42x}\) + 6y+2y =428

\(\overline{42x}\) + y.(6+2)=428

\(\overline{42x}\) + y.8 =428

y.8 =428-\(\overline{42x}\)

Để \(\overline{42x}\) chia hết cho 10 thì x phải bằng 0.

y.8 = 8

y =8:8

y =1

Vậy \(\overline{42x}\) = 420; y bằng 1.

Mình chỉ làm bài theo cách nhìn của mình. bạn nên ghi để rõ ràng hơn

17 tháng 9 2017

chả hỉu j cạ, đừng thuyết minh cho xong

18 tháng 2 2017

a,(x+17).(25-x)=0

<=>x+17=0 hoặc 25-x=0

<=>x=-17 hoặc x=25

Vậy x=-17 hoặc x=25

b,5.(3-x)+2.(x-7)=-17

15-5x+2x-14=-17

1-3x=-17

3x=18

x=6

Vậy x=6.

c,(x-5).(x^2-9)=0

(x-5).(x.x-9)=0

=>x-5=0 hoặc x.x-9=0

=>x=5 hoặc x=3

Vậy x=5 hoặc x=3.

Tớ chỉ biết làm có zậy thôi có zì thì cậu tự nghĩ tiếp nhé!!!Còn đúng hay sai thì mình không biết đâu nhé!!!hihi!!!

16 tháng 2 2017

ác bạn trình bày hộ mk nữa nha

15 tháng 5 2017

Ta có :

\(A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+.........................+\dfrac{1}{81}+\dfrac{1}{10^2}\)

\(A=\dfrac{1}{4}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....................+\dfrac{1}{9^2}+\dfrac{1}{10^2}\)

Mà :

\(\dfrac{1}{3^2}>\dfrac{1}{3.4}\)

\(\dfrac{1}{4^2}>\dfrac{1}{4.5}\)

\(\dfrac{1}{5^2}>\dfrac{1}{5.6}\)

.........................................

\(\dfrac{1}{9^2}>\dfrac{1}{9.10}\)

\(\dfrac{1}{10^2}>\dfrac{1}{10.11}\)

\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+........................+\dfrac{1}{9.10}+\dfrac{1}{10^2}\)

\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...................+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\)

\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{11}\)

\(\Rightarrow A>\dfrac{7}{12}-\dfrac{1}{11}\)

\(\Rightarrow A>\dfrac{65}{132}\)\(\rightarrowđpcm\)

15 tháng 5 2017

Ta có

A = \(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{81}+\dfrac{1}{100}\)

A = \(\dfrac{1}{4}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}+\dfrac{1}{10.10}\)

\(\dfrac{1}{3.3}>\dfrac{1}{3.4}\)

\(\dfrac{1}{4.4}>\dfrac{1}{4.5}\)

.................

\(\dfrac{1}{9.9}>\dfrac{1}{9.10}\)

\(\dfrac{1}{10.10}>\dfrac{1}{10.11}\)

=> A > \(\dfrac{1}{4}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)

A > \(\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\)

A > \(\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{11}\)

A > \(\dfrac{7}{12}-\dfrac{1}{11}\)

A > \(\dfrac{65}{132}\)

Vậy A > \(\dfrac{65}{132}\) < đpcm)