K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2021

tại vì thằng đó học ngu 

28 tháng 12 2021

đáp  án:
đây  là một câu đố ... "không  hay  cho  lắm"
vì  : 

1 là  1

+ là  2

1 là  3

cộng  lại: 1 + 1 = 3

#hoctot

30 tháng 5 2019

ta có 1+12=13 

mà 13x0=0

  1x0=0

=> 13=1

=> 1+12=1

30 tháng 5 2019

Toán 12 khó quá

mình mới hok lớp 8 ak

khó wá

NV
29 tháng 3 2021

\(y'=\dfrac{-3}{\left(x-2\right)^2}\)

d. Phương trình hoành độ giao điểm

\(\dfrac{x+1}{x-2}=x-\dfrac{1}{2}\Leftrightarrow2x^2-7x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{2}\end{matrix}\right.\)

Tại \(x=0\Rightarrow\left\{{}\begin{matrix}y'=-\dfrac{3}{4}\\y=-\dfrac{1}{2}\end{matrix}\right.\) 

Pttt: \(y=-\dfrac{3}{4}x-\dfrac{1}{2}\)

Tại \(x=\dfrac{7}{2}\Rightarrow\left\{{}\begin{matrix}y'=-\dfrac{4}{3}\\y=3\end{matrix}\right.\) tiếp tuyến: \(y=-\dfrac{4}{3}\left(x-\dfrac{7}{2}\right)+3\)

e.

Tam giác ABC là tam giác nào nhỉ? Có lẽ đó là tam giác OAB?

NV
29 tháng 3 2021

g.

Giao điểm (C) với Ox có tọa độ \(\left(-1;0\right)\)

\(\Rightarrow y'\left(-1\right)=-\dfrac{1}{3}\)

Phương trình tiếp tuyến:

\(y=-\dfrac{1}{3}\left(x+1\right)\)

h.

Giao điểm (C) với Oy có tọa độ \(\left(0;-\dfrac{1}{2}\right)\)

Chính là trường hợp đầu của câu d, phương trình: \(y=-\dfrac{3}{4}x-\dfrac{1}{2}\)

2 tháng 9 2019

hỏi chấm 

3 tháng 9 2019

linh xem ở https://www.baogialai.com.vn/channel/12376/201909/neu-dang-buong-loi-phai-nhat-loi-dan-cua-bac-thi-se-gap-kho-khan-5647921/

2 tháng 12 2021

*Đâu phải chia lúc nào cũng lớn hơn trừ đâu bạn,

VD: 10 : 5 = 1, Mà 10 - 5 = 5,

Vậy 10 : 5 < 10 - 5 (vì 1 < 5)

*Hay lấy ví dụ của bạn thì 10 : 9 = 1, (1) Mà 10 - 9 = 1

Vậy 10 : 9 > 10 - 9 

*Cũng có trường hợp bằng nhau, ví dụ như: 4 : 2 = 2 Mà 4 - 2 = 2

Vậy 4 : 2 = 4 - 2 

hoctot 

2 tháng 12 2021

chia với trừ khác nhau nha

23 tháng 4 2016

Ta có \(f'\left(x\right)=3ax^2+2bx+c;f"\left(x\right)=6ax+2b\)

Hàm số \(f\left(x\right)\) đạt cực tiểu tại \(x=0\) khi và chỉ khi 

\(\begin{cases}f'\left(0\right)=0\\f"\left(0\right)>0\end{cases}\)\(\Leftrightarrow\begin{cases}c=0\\2b>0\end{cases}\)\(\Leftrightarrow\begin{cases}c=0\\b>0\end{cases}\left(1\right)\)

Hàm số \(f\left(x\right)\) đạt cực đại tại \(x=1\) khi và chỉ khi \(\begin{cases}f'\left(1\right)=0\\f"\left(1\right)< 0\end{cases}\)\(\Leftrightarrow\begin{cases}3a+2b+c=0\\6a+2b< 0\end{cases}\)

\(\begin{cases}f\left(0\right)=0\\f\left(1\right)=1\end{cases}\)\(\Leftrightarrow\begin{cases}d=0\\a+b+c+d=1\end{cases}\) \(\Leftrightarrow\begin{cases}d=0\\a+b+c+d=1\end{cases}\) (3)

Từ (1), (2), (3) suy ra \(a=-2;b=3;c=0;d=0\)

Kiểm tra lại \(f\left(x\right)=-2x^3+3x^2\)

Ta có \(f'\left(x\right)=-6x^2+6x;f"\left(x\right)=-12x+6\)

\(f"\left(0\right)=6>0\), hàm số đạt cực tiểu tại \(x=0\)

\(f"\left(1\right)=-6< 0\), hàm số đạt cực đại tại \(x=1\)

Vậy \(a=-2;b=3;c=0;d=0\)

1 tháng 8 2019
https://i.imgur.com/aNE9VUX.jpg
6 tháng 9 2019