Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là số chữ số của 22013
b là số chữ số của 52013
Ta có:
10a - 1 < 22013 < 10a
10b - 1 < 52013 < 10b
=> 10a - 1.10b - 1 < 22013.52013 < 10a.10b
=>10a + b - 2 < 102013 < 10a + b
=> a + b - 2 < 2013 < a + b
=> a + b - 2 < 2013 và 2013 < a + b
a + b - 2 < 2013 => a + b < 2015
Mà 2013 < a + b
=> a + b = 2014
Vậy 2 số 22013 và 52013 viết liền nhau được một số có 2014 chữ số
Gọi số chữ số của \(2^{2016}\) là x.
Số chữ số của \(5^{2016}\) là y.
Số chữ số của A là x+y
Ta có: \(10^{x-1}< 2^{2016}< 10^x\)
\(10^{y-1}< 5^{2016}< 10^y\)
\(\Rightarrow\) \(10^{x-1}.10^{y-1}< 2^{2016}.5^{2016}< 10^x.10^y\)
\(\Leftrightarrow\) \(10^{x-1+y-1}< \left(2.5\right)^{2016}< 10^{x+y}\)
\(\Leftrightarrow\) \(10^{x+y-2}< 10^{2016}< 10^{x+y}\)
\(\Leftrightarrow\) \(x+y-2< 2016< x+y\)
\(\Leftrightarrow\) \(x+y-1=2016\)
\(\Leftrightarrow\) \(x+y=2017\)
Vậy số chữ số của A là 2017.
Gọi chữ số của 22013 là a .
Gọi chữ số của 52013 là b .
\(\Rightarrow\) Số chữ số của A là a + b .
Ta có :
x + y - 1 = 2013 .
x + y = 2014 .
Vậy A có 2014 chữ số .
Gọi số \(2^{2013}\) là số có a chữ số ( a ∈ N ; a \(\ne\) 0 )
số \(5^{2013}\) là số có b chữ số ( b ∈ N ; a \(\ne\) 0 )
Số bé nhất có a chữ số là \(10^{a-1}\)
Suy ra: \(10^{a-1}< 2^{2013}< 10^a\) \(\left(1\right)\)
\(10^{b-1}< 5^{2013}< 10^b\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ⇒ \(10^{a+b-2}< 10^{2013}< 10^{a+b}\)
⇒ \(a+b-1< 2013< a+b\)
⇔ \(a+b-2< a+b-1< a+b\)
Suy ra: \(a+b-1=2013\)
⇔ \(a+b=2014\)
Vậy hai số \(2^{2013}\) và \(5^{2013}\) viết liền nhau sẽ tạo thành một số có 2014 chữ số