K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 10 2021

Lời giải:

Đặt $\frac{x}{2}=t$ thì pt trở thành:

$2\cos 2t-5\sin t-2=0$

$\Leftrightarrow 2(1-2\sin ^2t)-5\sin t-2=0$

$\Leftrightarrow 4\sin ^2t+5\sin t=0$

$\Leftrightarrow \sin t(4\sin t+5)=0$

$\Rightarrow \sin t =0$ (chọn) hoặc $\sin t= \frac{-5}{4}< -1$ (loại)

$\Leftrightarrow t=k\pi$ với $k$ nguyên 

$\Leftrightarrow x=2k\pi$ với $k$ nguyên bất kỳ

5 tháng 10 2021

em cảm ơn ạ

 

NV
22 tháng 8 2020

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=\frac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=arcsin\left(\frac{4}{5}\right)+m2\pi\\x=\pi-arcsin\left(\frac{4}{5}\right)+n2\pi\end{matrix}\right.\)

Do \(-2\pi\le x\le3\pi\)

\(\Rightarrow\left\{{}\begin{matrix}-2\pi\le\frac{\pi}{2}+k\pi\le3\pi\\-2\pi\le arcsin\left(\frac{4}{5}\right)+m2\pi\le3\pi\\-2\pi\le\pi-arcsin\left(\frac{4}{5}\right)+n2\pi\le3\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\frac{5}{2}\le k\le\frac{5}{2}̸\\-1,15< m< 1,35\\-1,35< n< 1,14\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=\left\{-2;-1;0;1;2\right\}\\m=\left\{-1;0;1\right\}\\n=\left\{-1;0;1\right\}\end{matrix}\right.\)

Có 11 nghiệm

NV
28 tháng 3 2023

a.

\(y'=4x^3+\dfrac{3}{x^2}+\dfrac{1}{2\sqrt{x}}+\dfrac{2}{x^3}\)

b.

\(y'=\dfrac{\left(4sinx-3\right)'.\left(7-5sinx\right)-\left(7-5sinx\right)'.\left(4sinx-3\right)}{\left(7-5sinx\right)^2}\)

\(=\dfrac{4cosx\left(7-5sinx\right)+5cosx\left(4sinx-3\right)}{\left(7-5sinx\right)^2}\)

\(=\dfrac{13cosx}{\left(7-5sinx\right)^2}\)

28 tháng 5 2021

undefinedBạn tham khảo pt 1 hộ mình nha. Chúc bạn học tốt~

28 tháng 5 2021

Pt 1.undefined

Bạn tham khảo phương trình 1 hộ mình nha. Chúc bạn học tốt

19 tháng 9 2016

a, ta có 2x + π/3 = 3π/4 +k2π hoặc 2x + π/3 = -3π/4 + k2π

=> x= 5π/24 + kπ hoặc x= -13π/24 +kπ

b, đề sai phải ko

c,  cos22x - sin22x - 2sinx -1=0

<=> -2sin22x -2sin2x =0

<=> sin2x=0 hoặc sin2x=-1

<=> x=kπ hoặc x= π/2 + kπ ; x=-π/4 +kπ hoặc x=5π/8 + kπ

d, cos5xcosπ/4 - sin5xsinπ/4 = -1/2

   cos( 5x + π/4 ) = -1/2

   <=> x=π/12 +k2π/5 hoặc x= -11π/60 + k2π/5

f,4x+π/3=3π/10 -x +k2π  hoặc 4x+π/3 = x - 3π/10 +k2π

<=> x =-π/150 + k2π/5 hoặc x = π/90 +k2π/3

NV
25 tháng 7 2020

c/

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{5}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\frac{\pi}{2}+k2\pi\)

d/

\(\Leftrightarrow2cos^2\frac{x}{2}-1+3cos\frac{x}{2}+2=0\)

\(\Leftrightarrow2cos^2\frac{x}{2}+3cos\frac{x}{2}+1=0\)

\(\Rightarrow\left[{}\begin{matrix}cos\frac{x}{2}=-1\\cos\frac{x}{2}=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{x}{2}=\pi+k2\pi\\\frac{x}{2}=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\pi+k4\pi\\x=\pm\frac{4\pi}{3}+k4\pi\end{matrix}\right.\)

NV
25 tháng 7 2020

a/

\(\Rightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=-\frac{1}{3}\end{matrix}\right.\) (đặt \(cosx=t\) thành pt bậc 2 rồi bấm máy ra nghiệm thôi)

\(\Rightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{3}+k2\pi\\x=\pm arccos\left(-\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

b/

\(\Leftrightarrow6\left(1-sin^2x\right)+5sinx-7=0\)

\(\Leftrightarrow-6sin^2x+5sinx-1=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=arcsin\left(\frac{1}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

28 tháng 8 2021

a, Vì \(-5sinx\ge-5\Rightarrow m-5sinx\ge0\forall x\Leftrightarrow m\ge5\)

b, Vì \(cos2x\ge-1\Rightarrow2m+cos2x\ge0\forall x\Leftrightarrow2m\ge1\Leftrightarrow m\ge\dfrac{1}{2}\)

c, TH1: \(m=0\) thỏa mãn yêu cầu bài toán

TH2: \(m>0\)

Khi đó: \(-m+1\le mcosx+1\le m+1\)

Yêu cầu bài toán thỏa mãn khi \(-m+1>0\Leftrightarrow m< 1\)

\(\Rightarrow0< m< 1\)

TH3: \(m< 0\)

Khi đó: \(m+1\le mcosx+1\le-m+1\)

Yêu cầu bài toán thỏa mãn khi \(m+1>0\Leftrightarrow m>-1\)

\(\Rightarrow-1< m< 0\)

Vậy \(m\in\left(-1;1\right)\)

NV
21 tháng 9 2021

\(1-sin^23x-5sin3x+5=0\)

\(\Leftrightarrow-sin^23x-5sin3x+6=0\)

\(\Rightarrow\left[{}\begin{matrix}sin3x=1\\sin3x=-6< -1\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow3x=\dfrac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\)

NV
21 tháng 9 2021

\(\Leftrightarrow1-sin^22x+3sin2x-3=0\)

\(\Leftrightarrow-sin^22x+3sinx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=2>1\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow2x=\dfrac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\dfrac{\pi}{4}+k\pi\)