K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2022

ta có

\(x^2\ge0\forall x\)

mà \(x^2=-1\left(gt\right)\)

=>x ko tồn tại ( vô nghiệm)

12 tháng 4 2022

Ta có:\(x^2\ge0\)

Mà \(x^2=-1\) => x vô nghiệm

24 tháng 11 2019

hờ lố cùng trường :v

27 tháng 2 2020

0,5 . x - \(\frac{3}{7}\) : \(\frac{1}{2}\)= 1 \(\frac{1}{7}\)

\(\frac{1}{2}\). x  - \(\frac{3}{7}\)\(\frac{2}{1}\)\(\frac{8}{7}\)

\(\frac{1}{2}\) . x -       \(\frac{6}{7}\)      =   \(\frac{8}{7}\)
\(\frac{1}{2}\) . x                         = \(\frac{8}{7}\) + \(\frac{6}{7}\)

\(\frac{1}{2}\) . x                         =          \(\frac{14}{7}\)

\(\frac{1}{2}\) . x                         =             2

            x                         =             2 : \(\frac{1}{2}\)

            x                         =                4

               Vậy x = 4 

25 tháng 1 2019

\(1)-4x\left(x-5\right)-2x\left(8-2x\right)=-3\)

\(\Rightarrow-4x^2-\left(-20x\right)-16x+4x^2=-3\)

\(\Rightarrow20x-14x=-3\)

\(\Rightarrow6x=-3\)

\(\Rightarrow x=-\dfrac{1}{2}\)

Vậy \(x=-\dfrac{1}{2}\)

\(2)\) Theo bài ra, ta có: \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)\(x^2+y^2+z^2=14\)

\(\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)

\(\Rightarrow\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)

\(\Rightarrow\sqrt[3]{\left(\dfrac{x}{2}\right)^3}=\sqrt[3]{\left(\dfrac{y}{4}\right)^3}=\sqrt[3]{\left(\dfrac{z}{6}\right)^3}\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)

\(\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{4}\right)^2=\left(\dfrac{z}{6}\right)^2\)

\(\Rightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

Suy ra:

\(+)\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}.4=1=\left(\pm1\right)^2\Rightarrow x=\pm1\)

\(+)\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{16}.4=\dfrac{1}{4}=\left(\pm\dfrac{1}{2}\right)^2\Rightarrow y=\pm\dfrac{1}{2}\)

\(+)\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{36}.4=\dfrac{1}{9}=\left(\pm\dfrac{1}{3}\right)^2\Rightarrow z=\pm\dfrac{1}{3}\)

Vậy \(\left(x;y;z\right)\in\left\{\left(-1;-\dfrac{1}{2};-\dfrac{1}{3}\right);\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\right\}\)

25 tháng 1 2019

Oz Vessalius Câu 3 bạn xem lại xem có sai đề không?

12 tháng 11 2016

Ta có : \(P\left(0\right)=a_0=2^{10}\)

\(P\left(1\right)=a_0+a_1+a_2+...+a_{30}=\left(2+1+3\right)^{10}=6^{10}\)

Suy ra : \(S=a_1+a_2+...+a_{30}=P\left(1\right)-P\left(0\right)=6^{10}-2^{10}\)

13 tháng 11 2016

bài này dễ như ăn thịt chó

:)

23 tháng 11 2016

Có: \(x_2^2=x_1.x_3\Leftrightarrow\frac{x_2}{x_3}=\frac{x_1}{x_2}\left(1\right)\)

\(x_3^2=x_2.x_4\Rightarrow\frac{x_3}{x_4}=\frac{x_2}{x_3}\left(2\right)\)

\(x_4^2=x_3.x_5\Rightarrow\frac{x_4}{x_5}=\frac{x_3}{x_4}\left(3\right)\)

\(x_5^2=x_4.x_6\Rightarrow\frac{x_5}{x_6}=\frac{x_4}{x_5}\left(4\right)\)

Từ (1); (2); (3) và (4) \(\Rightarrow\frac{x_1}{x_2}=\frac{x_2}{x_3}=\frac{x_3}{x_4}=\frac{x_4}{x_5}=\frac{x_5}{x_6}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x_1}{x_2}=\frac{x_2}{x_3}=\frac{x_3}{x_4}=\frac{x_4}{x_5}=\frac{x_5}{x_6}=\frac{x_1+x_2+x_3+x_4+x_5}{x_2+x_3+x_4+x_5+x_6}\)

\(\Rightarrow\frac{x_1^5}{x_2^5}=\frac{x_1}{x_2}.\frac{x_2}{x_3}.\frac{x_3}{x_4}.\frac{x_4}{x_5}.\frac{x_5}{x_6}=\left(\frac{x_1+x_2+x_3+x_4+x_5}{x_2+x_3+x_4+x_5+x_6}\right)^5=\frac{x_1}{x_6}\left(đpcm\right)\)

23 tháng 11 2016

cảm ơn bạn nhé!

 

8 tháng 8 2017

dễ thế