Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a1+a2+...+a2002+a2003=(a1+a2)+...+(a2001+a2002)+a2003=0
=1 + 1+...+ 1+a2003(có 1001 số 1)=0
=1001+a2003=0
=>a2003=0-1001
=>a2003= -1001
Ta có:
a2003+a1=1
=>-1001+a1=1
=>a1=1-(-1001)
=>a1=1002
(nếu thấy hay thì cho mình nhé)
Ta có:
a1+a2+...+a2002+a2003=(a1+a2)+...+(a2001+a2002)+a2003=0
=1 + 1+...+ 1+a2003(có 1001 số 1)=0
=1001+a2003=0
=>a2003=0-1001
=>a2003= -1001
Ta có:
a2003+a1=1
=>-1001+a1=1
=>a1=1-(-1001)
=>a1=1002
(nếu thấy hay thì cho mình nhé)
Bài 2 : a) Ta có :
\(S=1+3+3^2+3^3+...+3^{2014}+3^{2015}\)
=> \(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2014}+3^{2015}\right)\)
=> \(S=4+3^2\left(1+3\right)+...+3^{2014}\left(1+3\right)\)
=> \(S=4+3^2.4+3^4.4+...+3^{2014}.4\)
=> \(S=4\left(3^2+3^4+...+3^{2014}\right)\)
Vì 4 chia hết cho 4 => S chia hết cho 4
b) \(S=1+3+3^2+3^3+...+3^{2014}+3^{2015}\)
=> \(S=\left(1+3+3^2+3^3\right)+...+\left(3^{2012}+3^{2013}+3^{2014}+3^{2015}\right)\)
=> \(S=40+3^4.40+3^8.40+...+3^{2012}.40\)
=> \(S=40\left(1+3^4+3^8+...+3^{2012}\right)\)
Vì 40 chia hết cho 10 => S chia hết cho 10 => S có tận cùng là 0
S = 1 + 3 + 32 + 33 + ..... + 32014 + 32015
=> 3S = 3 + 32 + 33 + 34 + .... + 32015 + 32016
=> 3S - S = 32016 - 1
=> S = ( 32016 - 1 ) : 2
Ta có 32016 = ( 34 )504 = 81504 = .......1
=> S = ( ......1 - 1 ) : 2 = ......0 : 2 = ......5
Vậy chữ số tận cùng của S là 5