Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)
<=>\(\frac{x-2020}{2015}+\frac{x-2020}{2016}-\frac{x-2020}{2017}-\frac{x-2020}{2018}=0\)
<=> \((x-2020)(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018})=0\)
<=>\(x-2020=0\)
<=> \(x=2020\)
Vậy_
b, tương tự
Phương trình 1:
\(\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}=10\)
\(\Rightarrow\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}-10=0\)
\(\Rightarrow\left(\frac{x-85}{15}-1\right)+\left(\frac{x-74}{13}-2\right)+\left(\frac{x-67}{11}-3\right)+\left(\frac{x-64}{9}-4\right)=0\)
\(\Rightarrow\frac{x-85-15}{15}+\frac{x-74-26}{13}+\frac{x-67-33}{11}+\frac{x-64-36}{9}=0\)
\(\Rightarrow\frac{x-100}{15}+\frac{x-100}{13}+\frac{x-100}{11}+\frac{x-100}{9}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)=0\)
Do \(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy x = 100.
Phương trình 3:
\(\frac{1909-x}{91}+\frac{1907-x}{93}+\frac{1905-x}{95}+\frac{1903-x}{97}+4=0\)
\(\Rightarrow\left(\frac{1909-x}{91}+1\right)+\left(\frac{1907-x}{93}+1\right)+\left(\frac{1905-x}{95}+1\right)+\left(\frac{1903-x}{97}+1\right)=0\)
\(\Rightarrow\frac{1909-x+91}{91}+\frac{1907-x+93}{93}+\frac{1905-x+95}{95}+\frac{1903-x+97}{97}=0\)
\(\Rightarrow\frac{2000-x}{91}+\frac{2000-x}{93}+\frac{2000-x}{95}+\frac{2000-x}{97}=0\)
\(\Rightarrow\left(2000-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
Do \(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\ne0\)
\(\Rightarrow2000-x=0\)
\(\Rightarrow x=2000\)
Vậy x = 2000.
\(a)5-\left(x-6\right)=4\left(3-2x\right)\)
\(\Leftrightarrow5-x+6=12-8x\)
\(\Leftrightarrow-x+8x=12-5-6\)
\(\Leftrightarrow7x=1\Leftrightarrow x=\frac{1}{7}\)
a) 5-(x-6)=4(3-2x)
<=>5-x-6=12-8x
<=>-x+8x=2-5-6
<=>7x=1
<=>x=1/7
Ta có : \(\frac{x-1}{12}-\frac{2x-12}{14}=\frac{3x-14}{25}-\frac{4x-25}{27}\)
=> \(\frac{x-1}{12}-1-\frac{2x-12}{14}-1=\frac{3x-14}{25}-1-\frac{4x-25}{27}-1\)
=> \(\frac{x-13}{12}-\frac{2x-26}{14}=\frac{3x-39}{25}-\frac{4x-52}{27}\)
=> \(\frac{x-13}{12}-\frac{2\left(x-13\right)}{14}=\frac{3\left(x-13\right)}{25}-\frac{4\left(x-13\right)}{27}\)
=> \(\frac{x-13}{12}-\frac{2\left(x-13\right)}{14}-\frac{3\left(x-13\right)}{25}+\frac{4\left(x-13\right)}{27}=0\)
=> \(\left(x-13\right)\left(\frac{1}{12}-\frac{2}{14}-\frac{3}{25}+\frac{4}{27}\right)=0\)
=> \(x-13=0\)
=> \(x=13\)
Vậy phương trình trên có nghiệm là \(S=\left\{13\right\}\)