Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D 4 60 O
Ta có : \(\widehat{BAO}=\frac{1}{2}\widehat{BAD}=\frac{1}{2}60^o=30^o\)
Mà tam giác AOB vuông tại O, lại có \(\widehat{BAO}=30^o\)
\(\Rightarrow OB=\frac{1}{2}AB=\frac{1}{2}.4=2\left(cm\right)\)
Áp dụng định lý Pi- ta - go vào tam giác AOB có :
\(AO=\sqrt{AB^2-BO^2}=\sqrt{4^2-2^2}\)
\(=\sqrt{16-4}=\sqrt{12}\left(cm\right)\)
Có \(BO=2\Rightarrow BD=2BO=2.2=4\left(cm\right)\)
\(S_{htABCD}=\frac{1}{2}AC.BD=AO.BD=\sqrt{12}.4=8\sqrt{3}\left(cm^2\right)\)
Đa thức f(x) là đa thức có bậc cao nhất là bậc 4 nên khi chia cho đa thức g(x) có bậc cao nhất là bậc 2 và không có dư thì được thương là đa thức bậc 2 . Suy ra
f(x) : g(x) = (x2 + cx + d)
<=> f(x) = g(x).(x^2 + cx + d)
<=> x4 - 3x3 + 3x2 + ax + b = (x2 - 3x + 4)(x2 + cx + d)
<=> x4 - 3x3 + 3x2 + ax + b = x4 + x3.(c - 3) + x2.(d - 3c + 4) + x(-3d + 4c) + 4d
Đồng nhất hai vế , ta sẽ tìm được a,b
a: \(\Leftrightarrow x^4-x^2-3x^3+6x+\left(b+1\right)x^2-b-1+\left(a-6\right)x+2b+1⋮x^2-1\)
=>a-6=0 và 2b+1=0
=>a=6; b=-1/2
b: =2x^2-3x
=2(x^2-3/2x)
=2(x^2-2*x*3/4+9/16-9/16)
=2(x-3/4)^2-9/8>=-9/8
Dấu = xảy ra khi x=3/4
1/ B chia đa thức f(x) cho g(x) như bình thường, dư 3
Để chia hết, số dư phải bằng 0
hay x- 2 thuộc ước của 3 bằng \(\pm1,\pm3\)
Ta có bảng gt:
.....
Vậy..........
a: f(x) chia hết cho g(x)
=>2x^2+4x-x-2+a+2 chia hết cho x+2
=>a+2=0
=>a=-2
b: f(x) chia hết cho g(x)
=>3x^2+6x+(m-6)x+2m-12-2m+7 chia hết cho x+2
=>-2m+7=0
=>m=7/2