Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon
+) \(A=3\left(x-4\right)^4-4\ge-4\)
Min A = -4 \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
+) \(B=5+2\left(x-2019\right)^{2020}\ge5\)
Min B = 5 \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)
+) \(C=5+2018\left(2020-x\right)^2\)
Min C = 5 \(\Leftrightarrow2020-x=0\Leftrightarrow x=2020\)
+) \(D=\left(x-1\right)^{2020}+\left(y+x\right)-1\ge-1\)
Min D = -1 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-x\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
+) \(E=2\left(x-1\right)^2+3\left(2x-y\right)^4-2\ge-2\)
Min E = -2 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\2x-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\2x=y\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
\(3^{2x+2}=9^{x+3}\)
\(\Rightarrow3^{2x+2}=3^{2x+6}\)
\(\Rightarrow2x+6=2x+2\)
\(\Rightarrow\left(2x-2x\right)+\left(6-2\right)=0\)
\(\Rightarrow0x=-4\left(loại\right)\)
\(b,\left(x-3\right)^4=\left(x-3\right)^6\)
\(\Rightarrow\left(x-3\right)^4-\left(x-3\right)^4.\left(x-3\right)^2=0\)
\(\Rightarrow\left(x-3\right)^4.\left[1-\left(x-3\right)^2\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-3\right)^4=0\\1-\left(x-3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x-3\in\left\{\pm1\right\}\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\x\in\left\{4;2\right\}\end{cases}\Rightarrow}x\in\left\{2;3;4\right\}}\)
a, => 32x+2 =32.(x+3)
2x+2=2.(x+3)
2(x+1)=2(x+3)
x+1=x+3
=> x= rỗng
vậy............
c, x15-x2=0
x2(x13-1)=0
\(\orbr{\begin{cases}x^2=0\\x^{13}=0\end{cases}}< =>\orbr{\begin{cases}x=0\\x^{13}=1^{13}\end{cases}}< =>\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
vậy.........
1/
a. \(x^3-2=25\)
\(x^3=25+2\)
\(x^3=27\)
\(\Rightarrow x=3\)
b.\(\left(x-3\right)^2=25\)
\(\left(x-3\right)^2=5^2\)
\(\Rightarrow x-3=5\)
\(\Rightarrow x=8\)
1,a, x^3-2=25 b, (x-3)^2=25 c, x^3-x^2=55 d,[(8.x-12):4].3^7=3^10
x^3=27 (x-3)^2=5^2 không có giá trị x (8.x-12):4=3^3
x^3=3^3 x-3=5 8.x-12=108
x=3 x=8 8.x=120
x=15
2, a, \(7^6:7^4+3^4.3^2-3^7:3\) b, 1736-(21-16).32+6.7^2 c,56.17+17.44-4^3.5+6.(3^2-2)
=\(7^2+3^6-3^6\) =1736-5.32+6.49 =17.(56+44)-320+42
=\(49\) =1736-160+294 =17.10-278
=1736+134 =170-278
=1870 =-108
d, 3.10^2-[1200-(4^2-2.3)^3]
=300-[1200-(16-6)^3]
=300-(1200-10^3)
=300-(1200-1000)
=300-200
=100
a) 52 . x = 62 + 82
\(5^2\cdot x=36+64\)
\(5^2\cdot x=100\)
\(x=100\div5^2\)
\(x=100\div25\)
\(x=4\)
b) ( 22 + 42 ) . x + 24 . 5 . x = 102
\(\left(4+16\right)\cdot x+16\cdot5\cdot x=100\)
\(x\cdot\left(20+80\right)=100\)
\(x\cdot100=100\)
\(x=100\div100\)
\(x=1\)
c ) 24 . x = 26
\(x=2^6\div2^4\)
\(x=2^{6-4}\)
\(x=2^2\)
\(x=4\)
d) 33 . x + 23 . x = 102
\(x\cdot\left(23+27\right)=100\)
\(x\cdot50=100\)
\(x=100\div50\)
\(x=2\)
e) 78 . x = 710
\(x=7^{10}\div7^8\)
\(x=7^{10-8}\)
\(x=7^2\)
\(x=49\)
Bài 1 tự làm!
Bài 2:
a, \(\left(3x-4\right)\left(x-1\right)^3=0\Rightarrow\left[{}\begin{matrix}3x-4=0\\\left(x-1\right)^3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
b, \(2^{2x-1}:4=8^3\Rightarrow2^{2x-1}:2^2=2^9\)
\(\Rightarrow2x-1-2=9\Rightarrow2x-3=9\Rightarrow2x-12\Rightarrow x=6\)
c, Đề chưa rõ
d, \(\left(x+2\right)^5=2^{10}\Rightarrow\left(x+2\right)^5=4^5\Rightarrow x+2=4\Rightarrow x=2\)
e, \(\left(3x-2^4\right).7^3=2.7^4\Rightarrow3x-2^4=2.7^4:7^3\Rightarrow3x-16=2.7=14\)
\(\Rightarrow3x=14+16=30\Rightarrow x=\dfrac{30}{3}=10\)
f, \(\left(x+1\right)^2=\left(x+1\right)^0\Rightarrow\left(x+1\right)^2=1\) (vì x0 = 1)
\(\Rightarrow x+1=1\Rightarrow x=0\)
Bài 1:
a: =>13x+8=9x+20
=>4x=12
hay x=3
b: \(\Leftrightarrow5x-7=-8-11-3x\)
=>5x-7=-3x-19
=>8x=-12
hay x=-3/2
c: \(\Leftrightarrow\left[{}\begin{matrix}12x-7=5\\12x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{6}\end{matrix}\right.\)
e: =>3x+1=-5
=>3x=-6
hay x=-2
a) \(4^x=2^{x+1}\)
\(2^{2x}=2^{x+1}\)
\(\Rightarrow2x=x+1\)
\(\Rightarrow2x-x=1\)
\(\Rightarrow x=1\)
b) \(16=\left(x-1\right)^4\)
\(2^4=\left(x-1\right)^4\)
\(\Rightarrow x-1=2\)
\(\Rightarrow x=3\)
c) \(x^{10}=1^x\)
\(x^{10}=1\)
\(x^{10}=1^{10}\)
\(\Rightarrow x=1\)
d) \(x^{10}=x\)
\(x^{10}-x=0\)
\(x\left(x^9-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^9-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
e) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\left(2x-15\right)^3\left[\left(2x-15\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x-15=0\\2x-15=\pm1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{15}{2}\\x=\left\{8;7\right\}\end{cases}}\)
\(A,4^X=2^{X+1}\)
\(\left(2^2\right)^X=2^{X+1}\)
\(\Rightarrow2^{2X}=2^{X+1}\)
\(\Rightarrow2X=X+1\)
\(\Rightarrow2X-X=1\Leftrightarrow X=1\)
\(B,16=\left(x-1\right)^4\)
\(\Rightarrow x-1=\hept{\begin{cases}2\\-2\end{cases}}\)
\(\Rightarrow x=\hept{\begin{cases}3\\-1\end{cases}}\)
a) Đặt \(A=\left|x+2\right|+\left|y-4\right|-6\)
Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|y-4\right|\ge0\end{cases}}\Rightarrow A\ge-6\)
\(\Rightarrow A_{min}=-6\Leftrightarrow\hept{\begin{cases}x=-2\\x=4\end{cases}}\)
b) Đặt \(B=x^2+3\)
Ta có: \(x^2\ge0\Rightarrow B\ge3\)
\(\Rightarrow B_{min}=3\Leftrightarrow x=0\)
c) Đặt \(C=\left(x-1\right)^2-3\)
Ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow C\ge-3\)
\(\Rightarrow C_{min}=-3\Leftrightarrow x=1\)
d) Đặt \(D=\left|x-2\right|+y^2+1\)
Ta có: \(\hept{\begin{cases}\left|x-2\right|\ge0\\y^2\ge0\end{cases}}\Rightarrow D\ge1\)
\(\Rightarrow D_{min}=1\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)