Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 5x+1-(5x-x^2)=0
5x+1-5x+x^2=0
(5x-5x)+1+x^2=0
0+1+x^2=0
1=x^2
\(\Rightarrow\)1^2=x^2
\(\Rightarrow\)x=1
Vậy nghiệm của đa thức trên là 1.
Ta có :
5x + 1 - ( 5x - x2 )
= 5x + 1 - 5x + x2
= x2 + 1
vì x2 \(\ge\)0 nên x2 + 1 > 0
Vậy đa thức trên không có nghiệm
Đa thức có nghiệm kết quả phải = 0
Mà M(x) và A(x) ko có = 0
=) M(x) và A(x) ko có nghiệm
1) Thay x = 3, ta có:
\(3.f\left(3+2\right)=\left(3^2-9\right).f\left(3\right)\)
\(\Rightarrow3.f\left(5\right)=0\Rightarrow f\left(5\right)=0\)
2) Thay x = -3
\(-3.f\left(-3+2\right)=\left[\left(-3\right)^2-9\right].f\left(-3\right)\)
\(\Rightarrow\left(-3\right).f\left(-1\right)=0\Rightarrow f\left(-1\right)=0\)
Thay x = 5
\(5.f\left(5+2\right)=\left(5^2-9\right).f\left(5\right)\)
\(\Rightarrow5f\left(7\right)=0\Rightarrow f\left(7\right)=0\)(vì f(5) = 0)
Vậy f (x) có ít nhất 3 nghiệm là: \(5;-1;7\)
Ta có: n3+5n=n3−n+6n=n(n2−1)+6n=n(n−1)(n+1)+6nn3+5n=n3−n+6n=n(n2−1)+6n=n(n−1)(n+1)+6nVì n là số nguyên dương
=> Tích của ba số nguyên dương liên tiếp: n-1, n, n+1 chia hết cho 2 (vì trong 3 số trên chắc chắn có 1 hoặc 2 số lẻ) và chia hết cho 3 (vì trong 3 số trên chắc chắn có 1 số chia hết cho 3)
Mà 6n chia hết cho 6
=> n(n-1)(n+1) +6n chia hết cho 6
=> n3+5nn3+5n chia hết cho 6 (đpcm)
Ta có n3 + 5n = n3 - n + 6n
= n(n2 - 1) + 6n
= n(n2 - n + n - 1) + 6n
= n[n(n - 1) + (n - 1)] + 6n
= n(n - 1)(n + 1) + 6n = (n - 1)n(n + 1) + 6n
Nhận thấy (n - 1)n(n + 1) \(⋮\)6 (tích 3 số nguyên liên tiếp)
Lại có 6n \(⋮\)6
=> (n - 1)n(n + 1) + 6n \(⋮\)6
=> n3 + 5n \(⋮\)6 \(\forall n\inℤ^+\)