K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2022

=49/99 NHA

HT

k cho mình nha

@@@@@@@@@@@@@@@@@@

30 tháng 1 2022

\(P=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)

27 tháng 5 2019

Ta có: \(M=\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}\)

\(\Leftrightarrow\frac{1}{2}M=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)

\(\Leftrightarrow\frac{1}{2}M=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)

\(\Leftrightarrow\frac{1}{2}M=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{10}-\frac{1}{11}=\frac{1}{6}-\frac{1}{11}=\frac{5}{66}\)

\(\Rightarrow M=\frac{5}{66}:\frac{1}{2}=\frac{5}{33}.\)

27 tháng 5 2019

\(M=\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}\)

\(M=\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+\frac{2}{90}+\frac{2}{110}\)

\(M=\frac{2}{6\cdot7}+\frac{2}{7\cdot8}+\frac{2}{8\cdot9}+\frac{2}{9\cdot10}+\frac{2}{10\cdot11}\)

\(M=2\left(\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\right)\)

\(M=2\left(\frac{1}{6}-\frac{1}{11}\right)\)

\(M=2\cdot\frac{5}{66}\)

\(M=\frac{5}{33}\)

23 tháng 8 2016

a) Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(2A=1-\frac{1}{101}=\frac{100}{101}\)

\(A=\frac{100}{101}\div2=\frac{50}{101}\)

b) Đặt \(B=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+\frac{1}{12.15}\)

\(3B=\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+\frac{3}{12.15}\)

\(3B=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\)

\(3B=\frac{1}{3}-\frac{1}{15}=\frac{4}{15}\)

\(B=\frac{4}{15}\div3=\frac{4}{45}\)

25 tháng 8 2016

Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(2A=1-\frac{1}{101}=\frac{100}{101}\)

\(A=\frac{100}{101}\div2=\frac{50}{101}\)

13 tháng 7 2018

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{y\times\left(y+1\right)}=\frac{996}{997}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{y}-\frac{1}{y+1}=\frac{996}{997}\)

\(\Leftrightarrow1-\frac{1}{y+1}=\frac{996}{997}\)

\(\Leftrightarrow\frac{1}{y+1}=1-\frac{996}{997}=\frac{1}{997}\)

\(\Leftrightarrow y+1=997\Leftrightarrow y=996\)

Vậy y = 996

13 tháng 7 2018

1/1×2 + 1/2×3 + 1/3×4 + ... + 1/ y x (y+1) =996/997

1-1/2+1/2-1/3+1/3-1/4+...+1/y - 1/y+1 =996/997

1-1/y+1=996/997

1/ y+1 =1-996/997

1/y+1 = 997/997-996/997

1/y+1=1/997

=> y+1 =997

y=997-1

y=996

Vậy y = 996

16 tháng 7 2016

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{9}\right)\)

\(=\frac{1}{2}.\frac{8}{9}\)

\(=\frac{4}{9}\)

16 tháng 7 2016

Đặt: A=1/1.3+1/3.5+1/5.7+1/7.9

2A=2/1.3+2/3.5+2/5.7+2/7.9

2A=1-1/3+1/3-1/5+1/5-1/7+1/7-1/9

2A=1-1/9

2A=8/9

A=4/9

CÁCH LÀM NHƯ SAU : 

(7/28 + 1/28) + 1/70 + 1/130 + 1/x.(x+3)

8/28 + 1/70 +1/130 +1/x.(x+3)

2/7+1/70+1/130+1/x.(x+3)

(20/70 +1/70)+1/130+1/x.(x+3)

3/10+1/130+1/x.(x+3)

39/130+1/130+1/x.(x+3)

4/13+1/x.(x+3)

Đến đây bn tự làm hộ mình vớ. chúc hok tốt k cho mình nhé

12 tháng 4 2021

\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+\frac{1}{x\left(x+3\right)}\)

\(=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{x\left(x+3\right)}\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{x}-\frac{1}{x+3}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{13}+\frac{1}{x}-\frac{1}{x+3}\right)\)

\(=\frac{1}{3}\left(\frac{12}{13}+\frac{1}{x}-\frac{1}{x+3}\right)\)

\(=\frac{1}{3}.\frac{12}{13}+\frac{1}{3}.\frac{1}{x}-\frac{1}{3}.\frac{1}{x+3}\)

\(=\frac{4}{13}+\frac{1}{3x}-\frac{1}{3x+3}\)

\(=\frac{4}{13}+\frac{1}{3x}-\frac{1}{3x+3}\)

\(=\frac{4}{13}+\frac{1}{3x}=\frac{1}{3x+3}\)

\(=\frac{4}{13}+\frac{1}{3x}=\frac{1}{3x+3}\)

\(=\frac{4}{13}+\frac{1}{3x}=\frac{1}{3}.\frac{1}{x+3}\)

\(=\frac{4}{13}=\frac{1}{3}.\frac{1}{x+3}-\frac{1}{3x}\)

\(=\frac{4}{13}=\frac{1}{3}.\frac{1}{x+3}-\frac{1}{3}.\frac{1}{x}\)

\(=\frac{4}{13}=\frac{1}{3}\left(\frac{1}{x+3}-\frac{1}{x}\right)\)

\(=\frac{4}{13}:\frac{1}{3}=\frac{1}{x+1}-\frac{1}{x}\)

\(=\frac{12}{13}=\frac{1}{x+1}-\frac{1}{x}\)

\(=\frac{12}{13}=\frac{x-\left(x+1\right)}{\left(x+1\right)x}\)

\(=\frac{12}{13}=-\frac{1}{x^2+x}\)

\(\Leftrightarrow=12\left(x^2+x\right)=13.\left(-1\right)\)

\(=12\left(x^2+x\right)=-13\)

\(=x^2+x=-\frac{13}{12}\)

\(=x\left(x+1\right)=-\frac{13}{12}\)

.... Chiụ 

29 tháng 6 2017

a) \(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+.....+\frac{5}{27.30}\)

\(=\frac{5}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+........+\frac{1}{27.30}\right)\)

\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{27}-\frac{1}{30}\right)\)

\(=\frac{5}{3}\left(1-\frac{1}{30}\right)\)

\(=\frac{5}{3}.\frac{29}{30}=\frac{29}{36}\)

1 tháng 7 2017

Đặt \(A=\frac{12}{3\cdot5}+\frac{12}{5\cdot7}+\frac{12}{7\cdot9}+....+\frac{12}{97\cdot99}\)

\(2A=\frac{12}{3}-\frac{12}{5}+\frac{12}{5}-\frac{12}{7}+...+\frac{12}{97}-\frac{12}{99}\)

\(2A=\frac{12}{3}-\frac{12}{99}\)

\(A=\frac{128}{33}\cdot\frac{1}{2}=\frac{64}{33}\)

23 tháng 5 2019

b

Q=\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{9900}\)

Rồi giải tương tự như câu a là được

23 tháng 5 2019

M=\(5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=5\left(1-\frac{1}{100}\right)=5.\frac{99}{100}=\frac{99}{20}\)

5 tháng 8 2018

\(2A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{201\cdot203}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{201}-\frac{1}{203}\)

\(2A=1-\frac{1}{203}\)

\(A=\frac{101}{203}\)

5 tháng 8 2018

Đáp án là : \(\frac{101}{203}\)

15 tháng 2 2015

(2/1+2/3) + (2/3+2/5) + (2/5+2/7) + ...+ (2/77+2/79)                                                                                                                    2/1 - 2/79                                                                                                                                                                                156/79