Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^5+2^6+2^7+2^8}{2^9+2^{10}+2^{11}+2^{12}}\)
\(=\frac{1\left(2^5+2^6+2^7+2^8\right)}{2^4\left(2^5+2^6+2^7+2^8\right)}\)
\(=\frac{1}{2^4}=\frac{1}{16}\)
Ta có \(\frac{1}{16}< \frac{1}{6}\)
=> \(\frac{2^5+2^6+2^7+2^8}{2^9+2^{10}+2^{11}+2^{12}}< \frac{1}{6}\)
So sánh \(\frac{2^5+2^6+2^7+2^8}{2^9+2^{10}+2^{11}+2^{12}}\) với \(\frac{1}{6}\) ?
Ta có: \(\frac{2^5+2^6+2^7+2^8}{2^9+2^{10}+2^{11}+2^{12}}=\frac{2^5.\left(1+2+2^2+2^3\right)}{2^9.\left(1+2+2^2+2^3\right)}\)
\(=\frac{1}{2^4}=\frac{1}{16}< \frac{1}{6}\)
Vậy \(\frac{2^5+2^6+2^7+2^8}{2^9+2^{10}+2^{11}+2^{12}}< \frac{1}{6}\)
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2020.2021}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2020}-\frac{1}{2021}\)
\(=1-\frac{1}{2021}=\frac{2020}{2021}\)
b) \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{21.23}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{21.23}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{21}-\frac{1}{23}\right)=\frac{1}{2}\left(1-\frac{1}{23}\right)=\frac{1}{2}.\frac{22}{23}=\frac{11}{23}\)
c) \(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{2.1}=\frac{1}{99}-\left(\frac{1}{98.99}+\frac{1}{97.98}+...+\frac{1}{1.2}\right)\)
\(=\frac{1}{99}-\left(\frac{1}{98}-\frac{1}{99}+\frac{1}{97}-\frac{1}{98}+...+1-\frac{1}{2}\right)=\frac{1}{99}-\left(-\frac{1}{99}+1\right)=\frac{1}{99}-\frac{98}{99}\)
\(=-\frac{97}{99}\)
d) bạn xem lại đề
a)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2020}-\frac{1}{2021}\)
\(=\frac{1}{1}-\frac{1}{2021}\)
\(=\frac{2020}{2021}\)
b)
\(=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{21\cdot23}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{21}-\frac{1}{23}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{23}\right)\)
\(=\frac{1}{2}\cdot\frac{22}{23}\)
\(=\frac{11}{23}\)
c)
\(=\frac{1}{99}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}\right)\)
\(=\frac{1}{99}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\right)\)
\(=\frac{1}{99}-\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{99}-\frac{98}{99}\)
\(=\frac{-97}{99}\)
d)
đề sai hay sao á mong bạn xem ljai ạ
Ta có (x-1)2>0
(y+2)2>0
=>(x-1)2+(y+2)2>0 mà theo bài ra (x-1)2+(y+2)2<0
=>(x-1)2+(y+2)2=0
=>x-1=0=>x=1;y+2=0=>y=-2
Vậy x=1;y=-2
AI NHANH NHẤT MÌNH TICK
TÍNH HỢP LÝ
\(\frac{3}{7}.\frac{9}{26}-\frac{1}{14}.\frac{1}{13}+\frac{6}{7}\)
ta có: a+b+c=1
<=>(a+b+c)^2=1
<=>ab+bc+ca=0 (1)
mặt khác: áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/a=y/b=z/c=(x+y+z)/(a+b+c)=x+y+z
<=> x=a(x+y+z) ; y=b(x+y+z) ; z=c(x+y+z)
=>xy+yz+zx=ab(x+y+z)^2+bc(x+y+z)^2+ca(x...
<=>xy+yz+zx=(ab+bc+ca)(x+y+z)^2 (2)
từ (1) và (2) ta có đpcm
Toi ko biet DICK