K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2020

\(\frac{2^5+2^6+2^7+2^8}{2^9+2^{10}+2^{11}+2^{12}}\)

\(=\frac{1\left(2^5+2^6+2^7+2^8\right)}{2^4\left(2^5+2^6+2^7+2^8\right)}\)

\(=\frac{1}{2^4}=\frac{1}{16}\)

Ta có \(\frac{1}{16}< \frac{1}{6}\)

=> \(\frac{2^5+2^6+2^7+2^8}{2^9+2^{10}+2^{11}+2^{12}}< \frac{1}{6}\)

30 tháng 8 2020

So sánh \(\frac{2^5+2^6+2^7+2^8}{2^9+2^{10}+2^{11}+2^{12}}\) với \(\frac{1}{6}\) ?

Ta có: \(\frac{2^5+2^6+2^7+2^8}{2^9+2^{10}+2^{11}+2^{12}}=\frac{2^5.\left(1+2+2^2+2^3\right)}{2^9.\left(1+2+2^2+2^3\right)}\)

\(=\frac{1}{2^4}=\frac{1}{16}< \frac{1}{6}\)

Vậy \(\frac{2^5+2^6+2^7+2^8}{2^9+2^{10}+2^{11}+2^{12}}< \frac{1}{6}\)

17 tháng 9 2019

Đáp án = \(\frac{24}{7}\)

Dp là 24 trên 7

Học tốt 

Ace

13 tháng 9 2020

a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2020.2021}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2020}-\frac{1}{2021}\)

\(=1-\frac{1}{2021}=\frac{2020}{2021}\)

b) \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{21.23}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{21.23}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{21}-\frac{1}{23}\right)=\frac{1}{2}\left(1-\frac{1}{23}\right)=\frac{1}{2}.\frac{22}{23}=\frac{11}{23}\)

c) \(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{2.1}=\frac{1}{99}-\left(\frac{1}{98.99}+\frac{1}{97.98}+...+\frac{1}{1.2}\right)\)

\(=\frac{1}{99}-\left(\frac{1}{98}-\frac{1}{99}+\frac{1}{97}-\frac{1}{98}+...+1-\frac{1}{2}\right)=\frac{1}{99}-\left(-\frac{1}{99}+1\right)=\frac{1}{99}-\frac{98}{99}\)

\(=-\frac{97}{99}\)

d) bạn xem lại đề

13 tháng 9 2020

a) 

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2020}-\frac{1}{2021}\) 

\(=\frac{1}{1}-\frac{1}{2021}\) 

\(=\frac{2020}{2021}\) 

b) 

\(=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{21\cdot23}\right)\) 

\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{21}-\frac{1}{23}\right)\)  

\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{23}\right)\) 

\(=\frac{1}{2}\cdot\frac{22}{23}\) 

\(=\frac{11}{23}\) 

c) 

\(=\frac{1}{99}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}\right)\) 

\(=\frac{1}{99}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\right)\) 

\(=\frac{1}{99}-\left(1-\frac{1}{99}\right)\) 

\(=\frac{1}{99}-\frac{98}{99}\) 

\(=\frac{-97}{99}\) 

d) 

đề sai hay sao á mong bạn xem ljai ạ 

14 tháng 7 2018

Ta có (x-1)2>0

          (y+2)2>0

=>(x-1)2+(y+2)2>0 mà theo bài ra (x-1)2+(y+2)2<0

=>(x-1)2+(y+2)2=0

=>x-1=0=>x=1;y+2=0=>y=-2

Vậy x=1;y=-2

28 tháng 7 2018

Thank you !!!

13 tháng 7 2018

ick mình

13 tháng 7 2018

Phải làm đúng mới k

10 tháng 2 2016

 ta có: a+b+c=1 
<=>(a+b+c)^2=1 
<=>ab+bc+ca=0 (1) 
mặt khác: áp dụng tính chất dãy tỉ số bằng nhau ta có: 
x/a=y/b=z/c=(x+y+z)/(a+b+c)=x+y+z 
<=> x=a(x+y+z) ; y=b(x+y+z) ; z=c(x+y+z) 
=>xy+yz+zx=ab(x+y+z)^2+bc(x+y+z)^2+ca(x... 
<=>xy+yz+zx=(ab+bc+ca)(x+y+z)^2 (2) 
từ (1) và (2) ta có đpcm 

10 tháng 2 2016

Mik mới lớp 6 thui ko giải đc sorry nha

31 tháng 7 2018

-(1+2+3+........+200)

=-[(200-1):1+1].(200+1):2

=-20100

vậy ......

31 tháng 7 2018

\(A=-1-2-3-4-5-.........-199-200.\)

\(=-\left(1+2+3+....+199+200\right)\)

\(=-\left[\left(200+1\right).200:2\right]\)

\(=-201000\)