Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài \(\Rightarrow\)\(x^2-2y^2-xy=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
Mà \(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)
\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{1}{3}\)
Vì \(x^2-2y^2=xy\)
\(\Leftrightarrow x^2-xy-y^2=0\)
\(\Leftrightarrow\left(x-y\right)^2-y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
Theo đề bài thì có :
\(x+y\ne0\)
\(\Rightarrow x-2y=0\)
\(\Leftrightarrow x=2y\)
Từ đó ta lại có :
\(P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Vậy .......
Tính giá trị của biểu thức: \(A=\frac{x-y}{x+y}\)
biết \(x^2-2y^2=xy\) \(\left(y\ne0;x+y\ne0\right)\)
Ta có: \(x^2-2y^2=xy\)
\(\Leftrightarrow\)\(x^2-2y^2-xy=0\)
\(\Leftrightarrow\)\(\left(x^2-y^2\right)-\left(y^2+xy\right)=0\)
\(\Leftrightarrow\)\(\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)
\(\Leftrightarrow\)\(\left(x+y\right)\left(x-2y\right)=0\)
Vì \(x+y\ne0\)nên \(x-2y=0\)\(\Leftrightarrow\)\(x=2y\)
Vậy \(A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Ta có: \(x^2-2y^2=xy\)
\(\Leftrightarrow x^2-y^2-y^2-xy=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
Mà \(x+y\ne0\)
\(\Rightarrow x-2y=0\)
\(\Rightarrow x=2y\)
\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
\(x^2-2y^2=xy\)
\(x^2-xy-2y^2=0\)
\(x^2+2xy+y^2-3xy-3y^2=0\)
\(\left(x+y\right)^2-3y\times\left(x+y\right)=0\)
\(\left(x+y\right)\left(x+y-3y\right)=0\)
Th1:
\(x-2y=0\)
Th2:
\(x+y=0\)
Vậy \(\frac{x+y}{x-y}=\frac{0}{x-y}=0\)
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mong các bn đừng làm như vậy nha
Ta có :\(x^2-2y^2=xy\)
\(x^2-xy-2y^2=0\)
\(x^2+2xy+y^2-3xy-3y^2=0\)
\(\left(x+y\right)^2-3y\times\left(x+y\right)=0\)
\(\left(x+y\right)\left(x+y-3y\right)=0\)
\(\Rightarrow\begin{cases}x-2y=0\\x+y=0\end{cases}\)
Vậy \(\frac{x+y}{x-y}=\frac{0}{x-y}=0\)
\(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy-2y^2=0\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)
Mà \(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)
\(\Rightarrow A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
\(\left(xy+\frac{1}{xy}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)
\(=\left(xy+\frac{1}{xy}\right)\left[\left(xy+\frac{1}{xy}\right)-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\right]\)
\(=\left(xy+\frac{1}{xy}\right)\left(xy+\frac{1}{xy}-xy-\frac{x}{y}-\frac{y}{x}-\frac{1}{xy}\right)\)
\(=\left(xy+\frac{1}{xy}\right)\left(-\frac{x}{y}-\frac{y}{x}\right)\)
\(=-\left(xy+\frac{1}{xy}\right)\left(\frac{x}{y}+\frac{y}{x}\right)=-\left(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(-\left(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(=4\)
Vậy giá trị bt ko phụ thuộc vào biến
bn có thể giải thích rõ hơn tại sao lại bằng 4 được không? Dù gì thì cx cảm ơn bn đã tl câu hỏi của mk
Ta có: \(x^2-2y^2=xy\)
\(\Leftrightarrow x^2-xy-2y^2=0\)
\(\Leftrightarrow x^2-2xy+xy-2y^2=0\)
\(\Leftrightarrow x\left(x-2y\right)+y\left(x-2y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)
Vì \(x+y\ne0\) nên x-2y=0
hay x=2y
Thay x=2y vào biểu thức \(A=\dfrac{x-y}{x+y}\), ta được:
\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)
Vậy: \(A=\dfrac{1}{3}\)