Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A = 1.2+2.3+3.4+4.5+...+99.100\)
\(3A= 1.2.3+2.3.3+3.4.3+4.5.3+\)\(...+\)
\(99.100.3\)
\(3A = 1.2.3+2.3.(4-1)+3.4. (5-2)+\)
\(4.5. (6-3)+...+99.100. (101-98)\)
\(3A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+\)
\(4.5.6-3.4.5+...+99.100.101-98.99.100\)
\(3A = 99 .100 .101\)
\(A = 99 .100 . 101 ÷ 3 \)
\(A = 333300\)
A = 1.2 + 2.3 + 3.4 + ....... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +.... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100
3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99 . 100 . 101
3A = 99 . 100 . 101 = 999900
A = 999900 : 3 = 343400
# Học tốt☘️#
=>3C=1.2.3+2.3.3+...+99.100.3
= 1.2.(3 - 0) + 2.3.(4 - 1) +...+ 99.100.(101 - 98)
= 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 +...+ 99.100.101 - 98.99.100
= 99.100.101
=>\(C=\frac{99.100.101}{3}=333300\)
\(C = 1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3C=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3C=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\)\(\left(101-98\right)\)
\(3C=\left(1.2.3+2.3.4+3.4.5+...+99.100.101\right)\)\(-\left(0.1.2+1.2.3+2.3.4+...+98.99.100\right)\)
\(3C=99.100.101-0.1.2\)
\(3C=999900-0=999900\)
\(C=999900:3\)
\(\Rightarrow C=333300\)
(870 – 1.2).(870 – 2.3).(870 – 3.4) … (870 – 99.100)
Ta có: 870 = 29.30
Nên suy ra: 870 – 29.30 = 29.30 – 29.30 = 0
G = 0.
k cho mik nha, cô mik giảng vậy
Làm tiếp
A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...........+\frac{1}{99}-\frac{1}{100}\)
A=\(1-\frac{1}{100}\)
A=\(\frac{100}{100}-\frac{1}{100}\)
A=\(\frac{99}{100}\)
Ta có : A = 1/1.2 + 1/2.3 + .... + 1/98.99 + 1/99.100 .
=> A = 1 - 1/2 + 1/2 - 1/3 + .... + 1/98 - 1/99 + 1/99 - 1/100 .
=> A = 1 - 1/100 .
=> A = 99/100 .
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=1-\frac{1}{100}\)
\(\Rightarrow A=\frac{99}{100}\)
Câu 1 :
A=1+2+3+..+100
=> số số hạng của A là : (100-1):1+1=100(số)
Giá trị của A là : ( 100+1)100:2= 5050
Câu 2 :
B=1.2+2.3+...+99.100
=> 3B = 3(1.2+2.3+...+99.100)
=> 3B = 1.2.3+2.3.3+...+99.100.3
=> 3B = 1.2.(3-0)+2.3.(4-1)+...+99.100.(101-98)
=> 3B = 1.2.3-0.1.2+2.3.4-1.2.3+....+99.100.101-98.99.100
=> 3B = 99.100.101
=> 3B = 999900
=> B = 999900:3=333300
Câu 3 :
C = 1 + 22 + 23 + ... + 299 + 2100
=>2C= 2+ 23 + 24+ ... + 2100 + 2101
=> 2C-C = ( 2+ 23 + 24+ ... + 2100 + 2101 ) - ( 1 + 22 + 23 + ... + 299 + 2100)
=> C = 2101- 1
A) Ta có S = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 99.100.(101 - 98)
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 99.100.101 - 98.99.100
=> 3S = 99.100.101
=> 3S = 999900
=> S = 333300
b) Để A đạt giá trị nhỏ nhất
=> (x - 1)2 nhỏ nhất
mà \(\left(x-1\right)^2\ge0\forall x\)
=> (x - 1)2 = 0 là giá trị nhỏ nhất của (x - 1)2
=> x - 1 = 0
=> x = 1
Vậy khi x = 1 thì A đạt giá trị nhỏ nhất
Để |x + 4| + 1996 đạt giá trị nhỏ nhất
=> |x + 4| nhỏ nhất
mà \(\left|x+4\right|\ge0\forall x\)
=> Giá trị nhỏ nhất của |x + 4| khi |x + 4| = 0
=> x + 4 = 0
=. x = -4
Vậy khi x = -4 thì B đạt GTNN
A = 1.2 + 2.3 + 3.4 + ... + 99.100
3A = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-1) +... + 99.100.(101-98)
3A = 1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4 +...+ 99.100.101 - 98.99.100
tiếp theo nek : 3A = 99.100.101 - 0.1.2 ( rút gọn nhưng tích giống nhau với nhau)
còn lại bạn tự tính nhé