K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2015

3x = 2y ; 7y =5z

=> \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\)

=>  \(\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\)

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

=> x=2.10=20

y=2.15=30

z=2.21=42

4 tháng 1 2016

áp dụng tính chất của dãy tỉ số = nhau

giải ra thj dài lém

4 tháng 1 2016

8
P/s: Tui thi ròi và đ/á này đúng nha

28 tháng 6 2021

Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)

  7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\)=> \(\hept{\begin{cases}x=20\\y=30\\z=42\end{cases}}\)

Vậy ...

28 tháng 6 2021

Trả lời :

Ta có : \(3x=2y \Rightarrow \frac{x}{2};7y=5z \Rightarrow\frac{y}{5}=\frac{z}{7} \)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}\Rightarrow}\frac{x}{10}=\frac{y}{15}=\frac{z}{21}}\) 

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15-21}=\frac{32}{16} \Rightarrow \hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)

Vậy : \(x=20; y=30; z=42\)

~HT~

1 tháng 11 2015

\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)

Suy ra \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5z}{3\cdot21-7\cdot14+5\cdot10}=\frac{30}{15}=2\)

\(\Rightarrow\) x = 42; y = 28; z = 20

2 tháng 7 2018

áp dụng dãy tỉ số bằng nhau là được mà

2 tháng 7 2018

\(2x=3y=5z\)   \(\Rightarrow\) \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y-z}{15-10-6}=\frac{-33}{-1}=33\)

suy ra:  \(\frac{x}{15}=33\) \(\Rightarrow\) \(x=495\)

           \(\frac{y}{10}=33\)\(\Rightarrow\)\(y=330\)

           \(\frac{z}{6}=33\)\(\Rightarrow\)\(z=198\)

Vậy...

b) lm tương tự

20 tháng 6 2019

2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)    =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x,y,z lần lượt là 20; 12; 42

20 tháng 6 2019

#)Giải :

Bài 2 :

d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow2k.3k.5k=810\)

\(\Rightarrow30k^3=810\)

\(\Rightarrow k^3=3\)

\(\Rightarrow k=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)

Vậy x = 6; y = 9; z = 15

2 tháng 8 2016

3x = 2y => x/2 = y/3 => x/10 = y/15         (1) 

7y = 5z => y/5 = z/7 => y/15 = z/21           (2)

Từ (1) và (2) => x/10 = y/15 = z/21

Áp dụng tình chất của dãy tỉ số bằng nhau:

(tự làm nha)

11 tháng 1 2019

Câu hỏi của Phú Hồ Kim - Toán lớp 7 - Học toán với OnlineMath

Tham khảo ơ link này nhé!

19 tháng 6 2016

Tìm x, y, z bik 3x = 2y, 7y = 5z và x-y+z = 32 
Ta có 3x=2y => x/2=y/3 <=> x/10 = y/15 (1) 
7y = 5z => z/7 = y/5 <=> z/21 = y/15 (2) 
Từ 1 và 2 ta suy ra x/10 = y/15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2 
Vậy x = 10*2 = 20 
y = 15*2 = 30 
z = 21*2 = 42 

19 tháng 6 2016

3x = 2y => x = (2/3)y (1)
7y = 5z => z =(7/5)y (2)
thay (1) và (2) vào x - y + z = 32 ta được : 

      (2/3)y - y + (7/5)y = 32
=>  (2/3 -1 + 7/5)y = 32
=>            (16/15)y = 32
=>                  y     = 30
thay y = 30 vào (1) và (2)  ta được x = 20 và z = 42

kl: x = 20 , y = 30 ,z = 42 

16 tháng 7 2015

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

Suy ra \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

=> x = 2.10 = 20; y = 2.15 = 30; z = 2.21 = 42