Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
biết giải bài 2
x/12=y/14=x.y/12.24=98/288=49/144
=> x/12=49/144=> 49/12
=> y/14=49/144=> 343/72
mới lớp 2 thôi
3. Tìm x biết: |15-|4.x||=2019
\(\Rightarrow\orbr{\begin{cases}15-\left|4x\right|=2019\\15-\left|4x\right|=-2019\end{cases}\Rightarrow\orbr{\begin{cases}\left|4x\right|=-2004\\\left|4x\right|=2034\end{cases}}}\)
vì \(4x\ge0\)\(\Rightarrow\)|4x|=2043\(\Rightarrow4x=2034\Rightarrow x=508,5\)
KL: x=508,5
a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)
=> 2x + 7 = 4
2x = 4 - 7
2x = -3
x = -3 : 2
x = -1,5
Vậy x = -1,5
2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x,y,z lần lượt là 20; 12; 42
#)Giải :
Bài 2 :
d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=3\)
\(\Rightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)
Vậy x = 6; y = 9; z = 15
a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10
Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)
hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
a) x ( x - 1 ) < 0
\(\Rightarrow\hept{\begin{cases}x< 0\\x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x>0\\x-1< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 0\\x>1\end{cases}}\) ( vô lí ) hoặc \(\hept{\begin{cases}x>0\\x< 1\end{cases}}\)
=> \(\hept{\begin{cases}x>0\\x< 1\end{cases}}\)
=> 0 < x < 1
Vậy 0 < x < 1
b) Lát nghĩ ^^
b) k chắc lắm ( tình bày theo ý hiểu thoii nha )
\(\frac{x^2\left(x-3\right)}{x-9}\le0\)
\(\Rightarrow\) x2 ( x - 3 ) = 0 hoặc \(\hept{\begin{cases}x^2\left(x-3\right)< 0\\x-9>0\end{cases}}\) hoặc \(\hept{\begin{cases}x^2\left(x-3\right)>0\\x-9< 0\end{cases}}\)
Mà \(x^2\ge0\forall x\)
\(\Rightarrow\) x - 3 = 0 hoặc \(\hept{\begin{cases}x-3< 0\\x-9>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3>0\\x-9< 0\end{cases}}\)
\(\Rightarrow\) x = 3 hoặc \(\hept{\begin{cases}x< 3\\x>9\end{cases}}\) ( vô lí ) hoặc \(\hept{\begin{cases}x>3\\x< 9\end{cases}}\)
\(\Rightarrow3\le x< 9\)
Vậy \(3\le x< 9\)
@@ Học tốt
Chiyuki Fujito
a) Ta có : \(-2x=5y\Rightarrow\frac{x}{5}=\frac{y}{-2}\) và \(x+y=30\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5+\left(-2\right)}=\frac{30}{3}=10\)
\(\Rightarrow x=10\times5=50\) \(y=10.\left(-2\right)=-20\)
b) Mình quy ra luôn cái đầu nhé
\(\left(x^2-1\right)^2+0,5=4,5\Rightarrow\left(x^2-1\right)^2=4,5-0,5=4=2^2\)
\(\Rightarrow\orbr{\begin{cases}x^2-1=2\\x^2-1=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=2+1=3\\x^2=\left(-2\right)+1=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=\sqrt{3}\\x=-\sqrt{1}\end{cases}}}\)
Vậy \(x\in\left\{\sqrt{3};-\sqrt{1}\right\}\)
không chép lại đề bài
a) -2x=5y\(\Leftrightarrow\)\(\frac{x}{y}\)=\(\frac{-2}{5}\)=\(\frac{x}{5}\)=\(\frac{y}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}\)+\(\frac{y}{-2}\)=\(\frac{x+y}{5+\left(-2\right)}\)=\(\frac{30}{3}\)=10
Do đó:
\(\frac{x}{5}\)=10\(\Rightarrow\)x=10.5=50
\(\frac{y}{-2}\)=10\(\Rightarrow\)y=10.(-2)=-20
Vậy x=50, y=-20