Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> x + 1 là Ước của 63
=> x + 1 thuộc {+1; +3; +7; +9; +21; +63}
với x + 1 = +1
=> x = 0 hoặc x = -2
với x + 1 = +3
=> x = 2 hoặc x = -4
với x + 1 = +7
=> x = 6 hoặc x = -8
với x + 1 = +9
=> x = 8 hoặc x = -10
với x + 1 = +21
=> x = 20 hoặc x = -22
với x + 1 = +63
=> x = 62 hoặc x = -64
mà x + 1 nhỏ hơn 63
=> x thuộc {0; -2; 2; -4; 6; -8; 8; -10; 20; -22}
\(x\in\left\{2;5;6;8;11;13;14;17;20;23;26;27;29;32;34;35;38;41;44;47;48;50;53;55;56;59;\right\}\)
a) Ta có: \(7^x+12^y=50\)
\(7^x\) luôn lẻ với mọi x là số tự nhiên , \(50\) là số chẵn mà \(7^x+12^y=50\)
=> \(12^y\) là số lẻ mà 12 là số chẵn
=> \(y=0\)
Với \(y=0\) => \(7^x+1=50\)
=> \(7^x=49=7^2\)
=> \(x=2\)
b) \(\frac{18n+3}{21n+7}\) có thể rút gọn
=> \(21n+7\ne0\)
=> \(21n\ne-7\)
=> \(-3n\ne0\)
=> \(n\ne0\)mà n là số tự nhiên
Vậy để phân số \(\frac{18n+3}{21n+7}\) có thể rút gọn được khi n là số tự nhiên khác 0
Để \(\frac{63}{3n+1}\) rút gọn được thì 63 và 3n + 1 phải có ước chung
Có \(63=3^2.7\) nên 3n + 1 sẽ có ước là 3 hoặc 7.
Vì 3n+1 không thể chia hết cho 3 với n là số tự nhiên nên 3n+1 sẽ có ước là 7.
Như vậy: \(3n+1=7k\left(k\in Z\right)\)
\(\Leftrightarrow3n=7k-1\)
\(\Leftrightarrow n=\frac{7k-1}{3}\)
\(\Leftrightarrow n=\frac{6k+k-1}{3}\)
\(\Leftrightarrow n=2k+\frac{k-1}{3}\)
Vậy để n là số tự nhiên thì \(\frac{k-1}{3}\in N\) hay k = 3a+1. Thay vào biểu thức n ta có:
\(n=\frac{7k-1}{3}=\frac{7\left(3a+1\right)-1}{3}=7a+2\)
Vậy n = 7a+2 thì thỏa mãn đề bài.
P/s: không biết đúng hay không thôi nhé
a. Ta có:
\(\frac{8n+193}{4n+3}=\frac{2.4n+2.3+187}{4n+3}\)
\(=\frac{2.\left(4n+3\right)+187}{4n+3}\)
\(=2+\frac{187}{4n+3}\)
Để M có giá trị là số tự nhiên thì \(4n+3\)phải là ước tự nhiên của \(187=\left\{1;11;17;187\right\}\)
\(\left(+\right)4n+3=1\Rightarrow4n=1-3=-2\Leftrightarrow n=-\frac{1}{2}\)( không thỏa mãn n là số tự nhiên )
\(\left(+\right)4n+3=11\Rightarrow4n=11-3=8\Leftrightarrow n=2\)( thỏa mãn )
\(\left(+\right)4n+3=17\Rightarrow4n=14\Leftrightarrow n=\frac{7}{2}\)( không thỏa mãn n là số tự nhiên )
\(\left(+\right)4n+3=187\Rightarrow4n=187-3=184\Leftrightarrow n=46\)( thỏa mãn )
Vậy \(n\in\left\{2;46\right\}.\)
b. Gọi ước chung của 8n + 193 và 4n + 3 là d
Ta có:
\(\hept{\begin{cases}8n+193⋮d\\4n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}8n+193⋮d\\2\left(4n+3\right)⋮d\end{cases}}\)
\(\Rightarrow8n+193-2\left(4n+3\right)⋮d\)
\(\Leftrightarrow187⋮d\)
\(\Rightarrow d\inƯ\left(187\right)=\left\{1;11;17;187\right\}\)
Thử:
\(n=156\Rightarrow M=\frac{77}{19}\)
\(n=165\Rightarrow M=\frac{89}{39}\)
\(n=167\Rightarrow M=\frac{139}{61}.\)
\(M=\frac{8n+193}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\inℕ^∗\Rightarrow\frac{187}{4n+3}\inℕ^∗\)
Vì \(n\inℕ^∗\Rightarrow4n+3\inℕ^∗\Rightarrow4n+3\inƯ\left(187\right)\Rightarrow4n+3\in\left\{\pm1;\pm11;\pm17;\pm187\right\}\)
\(\Rightarrow n\in\left\{-1;2;-5;46\right\}\)
b. M rút gọn được <=> \(\frac{187}{4n+3}\)rút gọn được => 4n+3 chia hết cho 11, 17 hoặc 187
Mà \(150\le n\le170\Rightarrow603\le4n+3\le683\)
Ta có: trong khoảng từ 603 -> 683 chỉ có:
+ 605, 616, ..., 682 chia hết cho 11 => 4n+3 \(\in\){605, 616, ..., 682} => Tìm n
+ 612, 629, ..., 680 chia hết cho 17 => \(4n+3\in\left\{612,629,...,680\right\}\)=> tìm n
+ không có số nào chia hết cho 187