Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi STN đó là a
Ta có: \(a-15\in BC\left(20;25;30\right)\)và a chia hết cho 41
=> \(a-15\in BC\left(300\right)\)
Mà a<1000 nên a-15<985
=> \(a-15\in\left\{0;300;600;900\right\}\)
Hay \(a\in\left\{15;315;615;915\right\}\)
Mà a chia hết cho 41 nên a=615
Vậy số tự nhiên đó là 615
tick nha !!!!!!!!!!!!!!!!!!
Bài giải :
Gọi số tự nhiên cần tìm là a ( a∈ N; a < 1000)
Vì a chia cho 20, 25, 30 đều dư 15 nên a - 15 ⋮ 20, 25, 30 → a - 15 ∈BC(20,25,30)
Ta có : BCNN(20, 25, 30) = 22.52.3=300
→ a - 15 = {300, 600, 900, 1200 , ...}
→ a = {315, 615, 915, 1215, ... }
Mà theo đề bài thì a < 1000 và a ⋮ 41 nên a = 615
Vậy số tự nhiên cần tìm là 615.
BẠN TICK ĐÚNG CHO MÌNH NHÉ,CẢM ƠN BẠN RẤT NHÌU
Gọi số tự nhiên cần tìm là a ( a∈∈ N; a < 1000)
Vì a chia cho 20, 25, 30 đều dư 15 nên a - 15 ⋮ 20, 25, 30 →→ a - 15∈BC(20,25,30)
Ta có : BCNN(20, 25, 30) = 22.52.3=300
→ a - 15 = {300, 600, 900, 1200 , ...}
→ a = {315, 615, 915, 1215, ... }
Mà theo đề bài thì a < 1000 và a ⋮ 41 nên a = 615
Vậy số tự nhiên cần tìm là 615.
Gọi số tự nhiên cần tìm là a ( a\(\in\)N, a <1000).
Vì a: 25;20 và 30 đều dư 15 nên (a-15)\(\in\)BC(20,25,30)
BCNN(20,25,30)=300
\(\Rightarrow\)(a-15)\(\in\)B(300)={0;300;600;900;1200;...}
\(\Rightarrow\)a \(\in\){15;315;615;915;1215;...}
Do a chia cho 41 không dư nên a\(⋮\)41; a<1000 nên a = 615
Vậy số tự nhiên cần tìm là 615
Gọi số tự nhiên nhỏ nhất đó là a (a thuộc N*)
Theo bài ra: a:2 dư 1
a:3 dư 1
a:4 dư 1
a:5 dư 1
a:6 dư 1
=> a-1 chia hết cho 2,3,4,5,6
=> a-1 thuộc BC(2,3,4,5,6)
Mà a là số tự nhiên nhỏ nhất nên a-1= BCNN(2,3,4,5,6)
Ta có 4=2 mũ 2
6=2.3
Do đó BCNN(2,3,4,5,6)=60
=>BC(2,3,4,5,6)=B(60)
=> a-1 thuộc {0,60,120,180,240,300,..}
=> a thuộc {1,61,121,181,241,301,..}
Lại có: a chia hết cho 7
=> a= 301
Vậy số tự nhiên cần tìm là 301
goi so can tim la a
a la so tu nhien nho nhat chia het cho 7=> a thuoc B(7)
ma a:2 du 1, chia cho 3 du 1, chia cho 4 du 1, chia cho 5 du 1, chia cho 6 du 1=> a thuoc BC(2,3,4,5,6,)+1
BCNN(2,3,4,5,6)=60
BC(2,3,4,5,6)={0;60;120;180;240;300;...}
BC(2,3,4,5,6)+1={1;121;181;241;301;...}
ma chi co 301 chia het cho 7=> a=301
vay so can tim la 301
Tìm số tự nhiên nhỏ hơn 400 mà khi chia số đó cho 2;3;4;5;6 đều dư 1 và khi chia cho 7 thì không dư.
Gọi số cần tìm là a , ta có:
a chia 2;3;4;5;6 dư 1
=> a - 1 thuộc BC(2;3;4;5;6)
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 6 = 2.3
=> BCNN(2;3;4;5;6) = 22.3.5 = 60
Vậy a \(\in\) {1 ; 61 ; 121 ; 181 ; 241 ; 301 ; 361 ; 421 ; ..}
Mà a < 400 và a chia hết cho 7 nên a = 301
Vậy số cần tìm là 301
Gọi số cần tìm là a ( a thuộc N*)
a chia 2;3;4;5;6 dư 1
=> a - 1 thuộc BC(2;3;4;5;6)
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 6 = 2.3
=> BCNN(2;3;4;5;6) = 22.3.5 = 60
Vậy a ∈ {1 ; 61 ; 121 ; 181 ; 241 ; 301 ; 361 ; 421 ; ..}
Mà a < 400 và a chia hết cho 7 nên a = 301
Vậy số Cần tìm là 301