Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html
Về mặt thực tế thì số 0 là số tự nhiên có lập phương nhỏ nhất, do đó nếu đề là "chia hết cho tất cả các số TỰ NHIÊN có lập phương bé hơn n" thì sẽ không có số n nào thỏa mãn. còn nếu đề như phần in đậm ban đầu của bạn đã đăng lên thì số 0 sẽ là số lớn nhất.
Từ gt=> 10a+b+10b+a là scp=> 11(a+b) là scp=> a+b có dạng 11k^2. Vì 0<a<10,0=<b<10 nên lần lượt thử ta thấy các số ab 56,65 thỏa mãn
a) \(4n-5⋮2n-1\)
\(\Rightarrow\left(4n-2\right)-3⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)
\(\Rightarrow-3⋮2n-1\)
\(\Rightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
+) \(2n-1=1\Rightarrow2n=2\Rightarrow n=1\) ( chọn )
+) \(2x-1=-1\Rightarrow2n=0\Rightarrow n=0\) ( chọn )
+) \(2n-1=3\Rightarrow2n=4\Rightarrow n=2\) ( chọn )
+) \(2n-1=-3\Rightarrow n=-1\) ( loại )
Vậy \(n\in\left\{1;0;2\right\}\)
Do n là số nguyên dương nên n có 3 dạng \(3k;3k+1;3k+2\) với \(k\inℕ^∗\)
Với n=3k Ta có:\(2^n-1=2^{3k}-1=8^k-1^k⋮7\)
Với n=3k+1 ta có:\(2^n-1=2^{3k+1}-1=2\cdot2^{3k}-1=2\cdot8^k-1=2\left(8^k-1\right)+1\) chia 7 dư 1.
Với n=3k+2,ta có:\(2^n-1=2^{3k+2}-1=4\cdot2^{3k}-1=4\cdot8^k-1=4\left(8^k-1\right)+3\) chia 7 dư 3.
Vậy n=3k thì 2n-1 chia hết cho 7.
$$$$Chứng minh 8k-1 chia hết cho 7.(Quy nạp)
Với k=1 ta có 7 chia hết cho 7.(TM)
Giả sử bài toán đúng với k=p khi đó:
\(A_p=8^p+1\) ta cần chứng minh bài toán đúng với n=p+1 tức là \(A_{p+1}=8^{k+1}+1\).Thật vậy!
Ta có:\(A_{p+1}=8^{k+1}-1=8\cdot8^k-1=8\left(8^k-1\right)+7=8\cdot A_k+7⋮7\)
\(\Rightarrow A_{p+1}⋮7\Rightarrowđpcm\)
Ta co : (2^4)^9=2^36
32^n=2^5n
Suy ra :2^36 chia het cho 2^5n
=> n=7 (7.5<36 va 7 la gia tri tu nhien lon nhat cua n )